Coolant is one of the important factors affecting the overall performance of the intercooler for the intercooled (IC) cycle marine gas turbine. Conventional coolants, such as water and ethylene glycol, have lower thermal conductivity which can hinder the development of highly effective compact intercooler. Nanofluids that consist of nanoparticles and base fluids have superior properties like extensively higher thermal conductivity and heat transfer performance compared to those of base fluids. This paper focuses on the application of two different water-based nanofluids containing aluminum oxide (Al2O3) and copper (Cu) nanoparticles in IC cycle marine gas turbine intercooler. The effectiveness-number of transfer unit method is used to evaluate the flow and heat transfer performance of intercooler, and the thermophysical properties of nanofluids are obtained from literature. Then, the effects of some important parameters, such as nanoparticle volume concentration, coolant Reynolds number, coolant inlet temperature, and gas side operating parameters on the flow and heat transfer performance of intercooler, are discussed in detail. The results demonstrate that nanofluids have excellent heat transfer performance and need lower pumping power in comparison with base fluids under different gas turbine operating conditions. Under the same heat transfer, Cu–water nanofluids can reduce more pumping power than Al2O3–water nanofluids. It is also concluded that the overall performance of intercooler can be enhanced when increasing the nanoparticle volume concentration and coolant Reynolds number and decreasing the coolant inlet temperature.

References

References
1.
Wen
,
X. Y.
, and
Xiao
,
D. M.
,
2008
, “
Feasibility Study of an Intercooled-Cycle Marine Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), p.
022201
.
2.
Dong
,
W.
,
Mao
,
C.
,
Zhu
,
J. J.
, and
Chen
,
Y.
,
2012
, “
Numerical and Experimental Analysis of Inlet Non-Uniformity Influence on Intercooler Performance
,”
ASME
Paper No. GT2012-69231.
3.
Khoshvaght-Aliabadi
,
M.
,
Hormozi
,
F.
, and
Zamzamian
,
A.
,
2014
, “
Role of Channel Shape on Performance of Plate-Fin Heat Exchangers: Experimental Assessment
,”
Int. J. Therm. Sci.
,
79
, pp.
183
193
.
4.
Gunnasegaran
,
P.
,
Shuaib
,
N. H.
,
Abdul Jalal
,
M. F.
, and
Sandhita
,
E.
,
2012
, “
Numerical Study of Fluid Dynamic and Heat Transfer in a Compact Heat Exchanger Using Nanofluids
,”
Int. Scholarly Res. Not.
,
2012
, p.
585496
.
5.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
(ASME Fluids Engineering Division, Vol. 231), ASME, New York, pp.
99
106
.
6.
Wen
,
D. S.
,
Lin
,
G. P.
,
Vafaei
,
S.
, and
Zhang
,
K.
,
2009
, “
Review of Nanofluids for Heat Transfer Applications
,”
Particuology
,
7
(
2
), pp.
141
150
.
7.
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2007
, “
Effects of Various Parameters on Nanofluid Thermal Conductivity
,”
ASME J. Heat Transfer
,
129
(
5
), pp.
617
623
.
8.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
,
2008
, “
Investigations of Thermal Conductivity and Viscosity of Nanofluids
,”
Int. J. Therm. Sci.
,
47
(
5
), pp.
560
568
.
9.
Mahbubul
,
I. M.
,
Saidur
,
R.
, and
Amalina
,
M. A.
,
2012
, “
Latest Developments on the Viscosity of Nanofluids
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
874
885
.
10.
Li
,
Y.
,
Zhou
,
J. E.
,
Tung
,
S.
,
Schneider
,
E.
, and
Xi
,
S.
,
2009
, “
A Review on Development of Nanofluid Preparation and Characterization
,”
Powder Technol.
,
196
(
2
), pp.
89
101
.
11.
Sidik
,
N. A. C.
,
Mohammed
,
H. A.
,
Alawi
,
O. A.
, and
Samion
,
S.
,
2014
, “
A Review on Preparation Methods and Challenges of Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
54
, pp.
115
125
.
12.
Trisaksri
,
V.
, and
Wongwises
,
S.
,
2007
, “
Critical Review of Heat Transfer Characteristics of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
11
(
3
), pp.
512
523
.
13.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S. A.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
280
289
.
14.
Xuan
,
Y. M.
, and
Li
,
Q.
,
2000
, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
,
21
(
1
), pp.
58
64
.
15.
Xuan
,
Y. M.
, and
Li
,
Q.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
151
155
.
16.
Murshed
,
S. M.
, and
Nieto de Castro
,
C. A.
,
2014
, “
Superior Thermal Features of Carbon Nanotubes-Based Nanofluids—A Review
,”
Renewable Sustainable Energy Rev.
,
37
, pp.
155
167
.
17.
Pang
,
C.
,
Lee
,
J. W.
, and
Kang
,
Y. T.
,
2015
Review on Combined Heat and Mass Transfer Characteristics in Nanofluids
,”
Int. J. Therm. Sci.
,
87
, pp.
49
67
.
18.
Huminic
,
G.
, and
Huminic
,
A.
,
2012
Application of Nanofluids in Heat Exchangers: A Review
,”
Renewable Sustainable Energy Rev.
,
16
(
8
), pp.
5625
5638
.
19.
Leong
,
K. Y.
,
Saidur
,
R.
,
Kazi
,
S. N.
, and
Mamun
,
A. H.
,
2010
, “
Performance Investigation of an Automotive Car Radiator Operated With Nanofluid-Based Coolants (Nanofluid as a Coolant in a Radiator)
,”
Appl. Therm. Eng.
,
30
(
17
), pp.
2685
2692
.
20.
Ray
,
D. R.
, and
Das
,
D. K.
,
2014
, “
Superior Performance of Nanofluids in an Automotive Radiator
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
4
), p.
041002
.
21.
Heris
,
S. Z.
,
Shokrgozar
,
M.
,
Poorpharhang
,
S.
,
Shanbedi
,
M.
, and
Noie
,
S. H.
,
2014
, “
Experimental Study of Heat Transfer of a Car Radiator With CuO/Ethylene Glycol–Water as a Coolant
,”
J. Dispersion Sci. Technol.
,
35
(
5
), pp.
677
684
.
22.
Naraki
,
M.
,
Peyghambarzadeh
,
S. M.
,
Hashemabadi
,
S. H.
, and
Vermahmoudi
,
Y.
,
2013
, “
Parametric Study of Overall Heat Transfer Coefficient of CuO/Water Nanofluids in a Car Radiator
,”
Int. J. Therm. Sci.
,
66
, pp.
82
90
.
23.
Hussein
,
A. M.
,
Bakar
,
R. A.
,
Kadirgama
,
K.
, and
Sharma
,
K. V.
,
2014
, “
Heat Transfer Enhancement Using Nanofluids in an Automotive Cooling System
,”
Int. Commun. Heat Mass Transfer
,
53
, pp.
195
202
.
24.
Peyghambarzadeh
,
S. M.
,
Hashemabadi
,
S. H.
,
Seifi Jamnani
,
M.
, and
Hoseini
,
S. M.
,
2011
, “
Improving the Cooling Performance of Automobile Radiator With Al2O3/Water Nanofluid
,”
Appl. Therm. Eng.
,
31
(
10
), pp.
1833
1838
.
25.
Peyghambarzadeh
,
S. M.
,
Hashemabadi
,
S. H.
,
Naraki
,
M.
, and
Vermahmoudi
,
Y.
,
2013
, “
Experimental Study of Overall Heat Transfer Coefficient in the Application of Dilute Nanofluids in the Car Radiator
,”
Appl. Therm. Eng.
,
52
(
1
), pp.
8
16
.
26.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass-Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
27.
Yousefi
,
M.
,
Enayatifar
,
R.
,
Darus
,
A. N.
, and
Abdullah
,
A. H.
,
2013
, “
Optimization of Plate-Fin Heat Exchangers by an Improved Harmony Search Algorithm
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
877
885
.
28.
Yang
,
S. M.
, and
Tao
,
W. Q.
,
2006
,
Heat Transfer
,
4th ed.
,
Higher Education Press
,
Beijing
.
29.
Yun
,
H. M.
,
2010
, “
Study on Flow and Heat Transfer Characteristics of Single Phase in Mini-Channels
,” Ph.D. thesis, Shandong University, Jinan, China.
30.
Chandrasekar
,
M.
,
Suresh
,
S.
, and
Bose
,
A. C.
,
2010
, “
Experimental Investigations and Theoretical Determination of Thermal Conductivity and Viscosity of Al2O3/Water Nanofluid
,”
Exp. Therm. Fluid Sci.
,
34
(
2
), pp.
210
216
.
31.
Jung
,
J. Y.
,
Cho
,
C.
,
Lee
,
W. H.
, and
Kang
,
Y. T.
,
2011
, “
Thermal Conductivity Measurement and Characterization of Binary Nanofluids
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
1728
1733
.
32.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2004
, “
A New Thermal Conductivity Model for Nanofluids
,”
J. Nanopart. Res.
,
6
(
6
), pp.
577
588
.
33.
Prasher
,
R.
,
2006
, “
Brownian-Motion-Based Convective–Conductive Model for the Effective Thermal Conductivity of Nanofluids
,”
ASME J. Heat Transfer
,
128
(
6
), pp.
588
595
.
34.
Khanafer
,
K.
, and
Vafai
,
K.
,
2011
, “
A Critical Synthesis of Thermophysical Characteristics of Nanofluids
,”
Int. J. Heat Mass Transfer
,
54
(
19
), pp.
4410
4428
.
35.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.
36.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3701
3707
.
37.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
.
38.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
(
4
), pp.
571
581
.
39.
Wen
,
C. Z.
,
2009
, “
Design and Study on Intercooling Heat Exchanger of Marine Gas Turbine
,” Master thesis, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai.
You do not currently have access to this content.