Alternative fuels for aviation are now a reality. These fuels not only reduce reliance on conventional petroleum-based fuels as the primary propulsion source, but also offer promise for environmental sustainability. While these alternative fuels meet the aviation fuels standards and their overall properties resemble those of the conventional fuel, they are expected to demonstrate different exhaust emissions characteristics because of the inherent variations in their chemical composition resulting from the variations involved in the processing of these fuels. This paper presents the results of back-to-back comparison of emissions characterization tests that were performed using three alternative aviation fuels in a GE CF-700-2D-2 engine core. The fuels used were an unblended synthetic kerosene fuel with aromatics (SKA), an unblended Fischer–Tropsch (FT) synthetic paraffinic kerosene (SPK) and a semisynthetic 50–50 blend of Jet A-1 and hydroprocessed SPK. Results indicate that while there is little dissimilarity in the gaseous emissions profiles from these alternative fuels, there is however a significant difference in the particulate matter emissions from these fuels. These differences are primarily attributed to the variations in the aromatic and hydrogen contents in the fuels with some contributions from the hydrogen-to-carbon ratio of the fuels.

References

References
1.
IATA
,
2009
, “
A Global Approach to Reducing Aviation Emissions. First Stop: Carbon-Neutral Growth From 2020
,”
International Air Transport Association Publications
,
Montreal, Canada
.
2.
ASTM
,
2014
, “
Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons
,”
ASTM
, West Conshohocken, PA, Paper No. D7566-14a.
3.
Park
,
C.
, and Headcase Design,
2012
, “
The Big Science Stories of 2012 In An Interactive Graphic: An At-a-Glance Summary of the Year's 25 Most Important Scientific Events
,” Popular Science, epub, retrieved from http://www.popsci.com/science/article/2012-12/big-science-stories-2012-interactive-graphic
4.
Anderson
,
B. E.
,
Beyersdorf
,
A. J.
,
Hudgins
,
C. H.
,
Plant
,
J. V.
,
Thornhill
,
K. L.
,
Winstead
,
E. L.
,
Ziemba
,
L. D.
,
Howard
,
R.
,
Corporan
,
E.
,
Miake-Lye
,
R. C.
,
Herndon
,
S. C.
,
Timko
,
M.
,
Woods
,
E.
,
Dodds
,
W.
,
Lee
,
B.
,
Santoni
,
G.
,
Whitefield
,
P.
,
Hagen
,
D.
,
Lobo
,
P.
,
Knighton
,
W. B.
,
Bulzan
,
D.
,
Tacina
,
K.
,
Wey
,
C.
,
Vander Wal
,
R.
,
Bhargava
,
A.
,
Kinsey
,
J.
, and
Liscinsky
,
D. S.
,
2011
, “
Alternative Aviation Fuel Experiment (AAFEX)
,”
NASA
Langley Research Center
,
Hampton, VA
, Report No. NASA/TM-2011-217059.
5.
Corporan
,
E.
,
Edwards
,
T.
,
Shafer
,
L.
,
DeWitt
,
M. J.
,
Klingshirn
,
C.
,
Zabarnick
,
S.
,
West
,
Z.
,
Striebich
,
R.
,
Graham
,
J.
, and
Klein
,
J.
,
2011
, “
Chemical, Thermal Stability, Seal Swell, and Emissions Studies of Alternative Jet Fuels
,”
Energy Fuels
,
25
(
3
), pp.
955
966
.
6.
Lobo
,
P.
,
Hagen
,
D. E.
, and
Whitefield
,
P. D.
,
2011
, “
Comparison of PM Emissions From a Commercial Jet Engine Burning Conventional, Biomass, and Fischer-Tropsch Fuels
,”
Environ. Sci. Technol.
,
45
(
24
), pp.
10744
10749
.
7.
Chan
,
T.
,
Cuddihy
,
K.
,
Chishty
,
W.
,
Davison
,
C.
,
McCurdy
,
M.
, and
Barton
,
P.
,
2011
, “
Gaseous and Particle Emissions From a Turbo-Jet Engine Operating on Alternative Fuels at Simulated Altitudes
,”
SAE
Technical Paper No. 2011-01-2597.
8.
Chalmers
,
J.
,
Davison
,
C. R.
,
Chishty
,
W. A.
,
Bird
,
J. W.
,
Chan
,
T.
,
Barton
,
P.
,
Dagenais
,
R.
,
Pham
,
V.
, and
Poitras
,
P.
,
2012
, “
Evaluation of the Impact of Alternative Fuel Use on the Emissions and Performance of a Service-Exposed T56 Engine
,”
ASME
Paper No. GT2012-69978.
9.
Davison
,
C. R.
,
Canteenwalla
,
P.
,
Chalmers
,
J. L. Y.
, and
Chishty
,
W. A.
,
2015
, “
Seal Level Performance of a CF-700 Engine Core With Alternative Fuels
,”
ASME
Paper No. GT2015-42230.
10.
Graham
,
J. L.
,
Striebich
,
R. C.
,
Myers
,
K. J.
,
Minus
,
D. K.
, and
Harrison
,
W. E.
, III
,
2006
, “
Swelling of Nitrile Rubber by Selected Aromatics Blended in a Synthetic Jet Fuel
,”
Energy Fuels
,
20
(
2
), pp.
759
765
.
11.
SAE International
,
2004
, “
Procedure for the Analysis and Evaluation of Gaseous Emissions From Aircraft Engines
,” SAE Technical Paper No. ARP1533A.
12.
Fernando
,
S.
,
Hall
,
C.
, and
Jha
,
S.
,
2006
, “
NOx Reduction From Biodiesel Fuels
,”
Energy Fuels
,
20
(
1
), pp.
376
382
.
13.
Chishty
,
W. A.
,
Davison
,
C. R.
,
Bird
,
J.
,
Chan
,
T.
,
Cuddihy
,
K.
,
McCurdy
,
M.
,
Barton
,
P.
,
Krasteva
,
A.
, and
Poitras
,
P.
,
2011
, “
Emissions Assessment of Alternative Aviation Fuel at Simulated Altitudes
,”
ASME
Paper No. GT2011-45133.
14.
Petzold
,
A.
,
Strom
,
J.
,
Schroder
,
F. P.
, and
Karcher
,
B.
,
1999
, “
Carbonaceous Aerosol in Jet Engine Exhaust: Emissions Characteristics and Implications for Heterogeneous Chemical Reactions
,”
Atmos. Environ.
,
33
(
17
), pp.
2689
2698
.
15.
Corporan
,
E.
, and
Cheng
,
M. D.
,
2010
, “
Emissions Characteristics of Military Helicopter Engines With JP-8 and Fischer-Tropsch Fuels
,”
J. Propul. Power
,
26
(
2
), pp.
317
324
.
16.
Beyersdorf
,
A. J.
,
Timko
,
M. T.
,
Ziemba
,
L. D.
,
Bulzan
,
D.
,
Corporan
,
E.
,
Herndon
,
S. C.
,
Howard
,
R.
,
Miake-Lye
,
R.
,
Thornhill
,
K. L.
,
Winstead
,
E.
,
Wey
,
C.
,
Yu
,
Z.
, and
Anderson
,
B. E.
,
2014
, “
Reductions in Aircraft Particulate Emissions Due to the Use of Fischer-Tropsch Fuels
,”
J. Atmos. Chem. Phys.
,
14
(11–23), pp.
11
23
.
17.
Liati
,
A.
,
Brem
,
B. T.
,
Durdina
,
L.
,
Vogtli
,
M.
,
Dasilva
,
Y. A.
,
Eggenschwiller
,
P. D.
, and
Wang
,
J.
,
2014
, “
Electron Microscopic Study of Soot Particulate Matter Emissions From Aircraft Turbine Engines
,”
Environ. Sci. Technol.
,
48
(
18
), pp.
10975
10983
.
18.
Chin
,
J. S.
, and
Lefebvre
,
A. H.
,
1990
, “
Influence of Fuel Chemical Properties on Soot Emissions From Gas Turbine Combustors
,”
J. Combust. Sci. Technol.
,
73
(
1–3
), pp.
470
486
.
19.
Corporan
,
E.
,
Monroig
,
O.
,
Wagner
,
M.
, and
DeWitt
,
M. J.
,
2004
, “
Influence of Fuel Chemical Composition on Particulate Matter Emissions of a Turbine Engine
,”
ASME
Paper No. GT2004-54335.
20.
DeWitt
,
M. J.
,
Corporan
,
E.
,
Graham
,
J.
, and
Minus
,
D.
,
2008
, “
Effects of Aromatic Type of Concentration in Fischer-Tropsch Fuel on Emissions Production and Material Compatibility
,”
Energy Fuels
,
22
(
4
), pp.
2411
2418
.
21.
Timko
,
M. T.
,
Yu
,
Z.
,
Onasch
,
T. B.
,
Wong
,
H. W.
,
Miake-Lye
,
R. C.
,
Beyersdorf
,
A. J.
,
Anderson
,
B. E.
,
Thornhill
,
K. L.
,
Winstead
,
E. L.
,
Corporan
,
E.
,
DeWitt
,
M. J.
,
Klingshirn
,
C. D.
,
Wey
,
C.
,
Tacina
,
K.
,
Liscinsky
,
D. S.
,
Howard
,
R.
, and
Bhargava
,
A.
,
2010
, “
Particulate Emissions of Gas Turbine Engine Combustion of a Fischer-Tropsch Synthetic Fuel
,”
Energy Fuels
,
24
(
11
), pp.
5883
5896
.
22.
Li
,
H.
,
Altaher
,
M. A.
,
Wilson
,
C.
,
Blakey
,
S.
, and
Chung
,
W.
,
2013
, “
Influence of Fuel Composition, Engine Power and Operation Mode on Exhaust Gas Particulate Size Distribution and Gaseous Emissions From a Gas Turbine Engine
,”
ASME
Paper No. GT2013-94854.
23.
McEnally
,
C. S.
,
Pfefferle
,
L. D.
,
Atakan
,
B.
, and
Kohse-Hoinghaus
,
K.
,
2006
, “
Studies of Aromatic Hydrocarbon Formation in Flames: Progress Towards Closing the Fuel Gap
,”
Prog. Energy Combust. Sci.
,
32
(
3
), pp.
247
294
.
24.
Smith
,
O. I.
,
1981
, “
Fundamentals of Soot Formation in Flames With Application to Diesel Engine Particulate Emissions
,”
Prog. Energy Combust. Sci.
,
7
(
4
), pp.
275
291
.
25.
Gulder
,
O. L.
,
1986
, “
Flame Temperature Estimation of Conventional and Future Jet Fuels
,”
ASME J. Eng. Gas Turbines Power
,
108
(
2
), pp.
376
380
.
You do not currently have access to this content.