The improvement in rotordynamic performance of the annular gas seal requires efficient and accurate prediction methods of rotordynamic coefficients. Although the existed transient computational fluid dynamics (CFD) methods in published literature have excellent numerical accuracy, most of them face the challenge due to rotordynamic coefficients at every excitation frequency to be solved by a separate transient CFD prediction thus much time-consuming. In this paper, a generalized prediction method is proposed to address this difficulty. Based on the Laplace transform method, the solution procedures for the reaction force/motion equation of the annular gas seal are deduced. With the specified excitations (rotor motion), the rotordynamic coefficients at all excitation frequencies can be solved by only one or two transient CFD solutions. To verify the present generalized method, the rotordynamic coefficients of two typical hole-pattern seals are computed and compared to the available experimental data. The results show that the predicted rotordynamic coefficients are in good agreement with the experimental tests. Compared to the previous transient CFD methods, the computational time of the present generalized method is reduced significantly while the accuracy is still maintained.

References

References
1.
Vance
,
J.
,
Zeidan
,
F.
, and
Murphy
,
B.
,
2010
,
Machinery Vibration and Rotordynamics
,
Wiley
,
New York
.
2.
San Andres
,
L.
,
2009
, “
Annular Pressure Seals
,” Texas A&M University, College Station, TX, http://repository.tamu.edu/bitstream/handle/1969.1/93252/Notes12a%20Damper%20Seals.pdf?sequence=1
3.
Migliorini
,
P. J.
,
Untaroiu
,
A.
,
Witt
,
W. C.
,
Morgan
,
N. R.
, and
Wood
,
H. G.
,
2013
, “
Hybrid Analysis of Gas Annular Seals With Energy Equation
,”
ASME
Paper No. GT2013-95575.10.1115/GT2013-95575
4.
Kleynhans
,
G.
, and
Childs
,
D. W.
,
1997
, “
The Acoustic Influence of Cell Depth on the Rotordynamic Characteristics of Smooth-Rotor/Honeycomb-Stator Annular Gas Seals
,”
ASME J. Eng. Gas Turbines Power
,
119
(
4
), pp.
949
957
.10.1115/1.2817079
5.
Soulas
,
T.
, and
San Andres
,
L.
,
2007
, “
A Bulk Flow Model for Off-Centered Honeycomb Gas Seal
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
185
194
.10.1115/1.2227031
6.
Arghir
,
M.
,
Billy
,
F.
,
Pineau
,
G.
,
Frěne
,
J.
, and
Texier
,
A.
,
2007
, “
Theoretical Analysis of Textured ‘Damper’ Annular Seals
,”
ASME J. Tribol.
,
129
(
3
), pp.
669
678
.10.1115/1.2738072
7.
Chochua
,
G.
, and
Soulas
,
T. A.
,
2007
, “
Numerical Modeling of Rotordynamic Coefficients for Deliberately Roughened Stator Gas Annular Seals
,”
ASME J. Tribol.
,
129
(
2
), pp.
424
429
.10.1115/1.2647531
8.
Yan
,
X.
,
Li
,
J.
, and
Feng
,
Z. P.
,
2011
, “
Investigations on the Rotordynamic Characteristics of a Hole-Pattern Seal Using Transient CFD and Periodic Circular Orbit Model
,”
ASME J. Vib. Acoust.
,
133
(
4
), p.
041007
.10.1115/1.4003403
9.
Yan
,
X.
,
He
,
K.
,
Li
,
J.
, and
Feng
,
Z. P.
,
2012
, “
Rotordynamic Performance Prediction for Surface-Roughened Seal Using Transient Computational Fluid Dynamics and Elliptical Orbit Model
,”
Proc. Inst. Mech. Eng., Part A
,
226
(
8
), pp.
975
988
.10.1177/0957650912460358
10.
Yan
,
X.
,
He
,
K.
,
Li
,
J.
, and
Feng
,
Z. P.
,
2015
, “
Numerical Investigations on Rotordynamic Characteristic of Hole-Pattern Seals With Two Different Hole-Diameters
,”
ASME J. Turbomach.
,
137
(
7
), p.
071011
.10.1115/1.4029239
11.
Nielsen
,
K. K.
,
Jønck
,
K.
, and
Underbakke
,
H.
,
2012
, “
Hole-Pattern and Honeycomb Seal Rotordynamic Forces: Validation of CFD-Based Prediction Techniques
,”
ASME
Paper No. GT2012-69878.10.1115/GT2012-69878
12.
Moore
,
J. J.
,
2003
, “
Three-Dimensional CFD Rotordynamic Analysis of Gas Labyrinth Seals
,”
ASME J. Vib. Acoust.
,
125
(
4
), pp.
427
433
.10.1115/1.1615248
13.
Childs
,
D. W.
, and
Wade
,
J.
,
2004
, “
Rotordynamic-Coefficients and Leakage Characteristics for Hole-Pattern-Stator Annular Gas Seal-Measurements Versus Predictions
,”
ASME J. Tribol.
,
126
(
2
), pp.
326
333
.10.1115/1.1611502
14.
Li
,
J.
,
Li
,
Z. G.
, and
Feng
,
Z. P.
,
2012
, “
Investigations on the Rotordynamic Coefficients of Pocket Damper Seals Using the Multi-Frequency, One-Dimensional, Whirling Orbit Model and RANS Solutions
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
102510
.10.1115/1.4007063
15.
Vannarsdall
,
M.
, and
Childs
,
D. W.
,
2012
, “
Static and Rotordynamic Characteristics for a New Hole-Pattern Annular Gas Seal Design Incorporating Larger Diameter Holes
,”
ASME
Paper No. GT2012-68208.10.1115/GT2012-68208
16.
ANSYS,
2007
, “
ANSYS CFX-Solver Theory Guide: Version 11.0
,”
ANSYS Inc.
,
Canonsburg, PA
.
You do not currently have access to this content.