An Eulerian–Lagrangian mathematical/computational methodology is employed for large-eddy simulation (LES) and detailed study of turbulent mixing in jet in cross-flow (JICF) configuration. Accurate prediction of mixing in JICF is crucially important to the development of advanced combustion systems. A high-order multiblock finite difference (FD) computational algorithm is used to solve the Eulerian velocity and pressure equations in a generalized coordinate system. The composition field, describing the mixing, is obtained from the filtered mass density function (FMDF) and its stochastic Lagrangian Monte-Carlo (MC) solver. Our simulations are shown to accurately predict the important flow features present in JICF such as the counter-rotating vortex pair (CVP), horseshoe, shear layer, and wake vortices. The consistency of the FD and MC parts of the hybrid LES/FMDF model is established for the simulated JICF in various conditions, indicating the numerical accuracy of the model. The effects of parameters influencing the jet penetration, entrainment, and turbulent mixing such as the jet velocity profile, and jet pulsation are investigated. The results show that the jet exit velocity profile significantly changes the trajectory and mixing of injected fluid. The jet pulsation is also shown to enhance the mixing depending on the flow Strouhal number. The LES/FMDF results are shown to be in good agreement with the available experimental data, confirming the reliability of LES/FMDF method for numerical simulation of turbulent mixing in complex flow configurations.

References

References
1.
Galeazzo
,
F. C. C.
,
Donnert
,
G.
,
Habisreuther
,
P.
,
Zarzalis
,
N.
,
Valdes
,
R. J.
, and
Krebs
,
W.
,
2011
, “
Measurement and Simulation of Turbulent Mixing in a Jet in Crossflow
,”
ASME J. Eng. Gas Turbines Power
,
133
(
6
), p.
061504
.10.1115/1.4002319
2.
Margason
,
R. J.
,
1993
,“
Fifty Years of Jet in Cross Flow Research
,” AGARD, Computational and Experimental Assessment of Jets in Cross Flow, Winchester, UK, Paper No. AGARD CP-534.
3.
Mahesh
,
K.
,
2013
, “
The Interaction of Jets With Crossflow
,”
Ann. Rev. Fluid Mech.
,
45
(
1
), pp.
379
407
.10.1146/annurev-fluid-120710-101115
4.
Andreopoulos
,
J.
, and
Rodi
,
W.
,
1984
, “
Experimental Investigation of Jets in a Crossflow
,”
J. Fluid Mech.
,
138
, pp.
93
127
.10.1017/S0022112084000057
5.
Cárdenas
,
C.
,
Denev
,
J. A.
,
Suntz
,
R.
, and
Bockhorn
,
H.
,
2012
, “
Study of Parameters and Entrainment of a Jet in Cross-Flow Arrangement With Transition at Two Low Reynolds Numbers
,”
Exp. Fluids
,
53
(
4
), pp.
965
987
.10.1007/s00348-012-1333-1
6.
Crabb
,
D.
,
Durao
,
D.
, and
Whitelaw
,
J.
,
1981
, “
A Round Jet Normal to a Crossflow
,”
ASME J. Fluids Eng.
,
103
(
1
), pp.
142
153
.10.1115/1.3240764
7.
Fric
,
T.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.10.1017/S0022112094003800
8.
Kelso
,
R. M.
,
Lim
,
T.
, and
Perry
,
A. E.
,
1996
, “
An Experimental Study of Round Jets in Cross-Flow
,”
J. Fluid Mech.
,
306
, pp.
111
144
.10.1017/S0022112096001255
9.
Smith
,
S.
, and
Mungal
,
M.
,
1998
, “
Mixing, Structure and Scaling of the Jet in Crossflow
,”
J. Fluid Mech.
,
357
, pp.
83
122
.10.1017/S0022112097007891
10.
Su
,
L.
, and
Mungal
,
M.
,
2004
, “
Simultaneous Measurements of Scalar and Velocity Field Evolution in Turbulent Crossflowing Jets
,”
J. Fluid Mech.
,
513
, pp.
1
45
.10.1017/S0022112004009401
11.
Cortelezzi
,
L.
, and
Karagozian
,
A. R.
,
2001
, “
On the Formation of the Counter-Rotating Vortex Pair in Transverse Jets
,”
J. Fluid Mech.
,
446
, pp.
347
373
.10.1017/S0022112001005894
12.
Galeazzo
,
F. C. C.
,
Donnert
,
G.
,
Cárdenas
,
C.
,
Sedlmaier
,
J.
,
Habisreuther
,
P.
,
Zarzalis
,
N.
,
Beck
,
C.
, and
Krebs
,
W.
,
2013
, “
Computational Modeling of Turbulent Mixing in a Jet in Crossflow
,”
Int. J. Heat Fluid Flow
,
41
, pp.
55
65
.10.1016/j.ijheatfluidflow.2013.03.012
13.
Majander
,
P.
, and
Siikonen
,
T.
,
2006
, “
Large-Eddy Simulation of a Round Jet in a Cross-Flow
,”
Int. J. Heat Fluid Flow
,
27
(
3
), pp.
402
415
.10.1016/j.ijheatfluidflow.2006.01.004
14.
Yuan
,
L. L.
, and
Street
,
R. L.
,
1998
, “
Trajectory and Entrainment of a Round Jet in Crossflow
,”
Phys. Fluids
,
10
(
9
), pp.
2323
2335
.10.1063/1.869751
15.
Yuan
,
L. L.
,
Street
,
R. L.
, and
Ferziger
,
J. H.
,
1999
, “
Large-Eddy Simulations of a Round Jet in Crossflow
,”
J. Fluid Mech.
,
379
, pp.
71
104
.10.1017/S0022112098003346
16.
Ziefle
,
J.
, and
Kleiser
,
L.
,
2009
, “
Large-Eddy Simulation of a Round Jet in Crossflow
,”
AIAA J.
,
47
(
5
), pp.
1158
1172
.10.2514/1.38465
17.
Sherif
,
S.
, and
Pletcher
,
R.
,
1989
, “
Measurements of the Flow and Turbulence Characteristics of Round Jets in Crossflow
,”
ASME J. Fluids Eng.
,
111
(
2
), pp.
165
171
.10.1115/1.3243618
18.
Muldoon
,
F.
, and
Acharya
,
S.
,
2010
, “
Direct Numerical Simulation of Pulsed Jets-in-Crossflow
,”
Comput. Fluids
,
39
(
10
), pp.
1745
1773
.10.1016/j.compfluid.2010.04.008
19.
Narayanan
,
S.
,
Barooah
,
P.
, and
Cohen
,
J.
,
2003
, “
Dynamics and Control of an Isolated Jet in Crossflow
,”
AIAA J.
,
41
(
12
), pp.
2316
2330
.10.2514/2.6847
20.
New
,
T.
,
Lim
,
T.
, and
Luo
,
S.
,
2006
, “
Effects of Jet Velocity Profiles on a Round Jet in Cross-Flow
,”
Exp. Fluids
,
40
(
6
), pp.
859
875
.10.1007/s00348-006-0124-y
21.
Salewski
,
M.
,
Stankovic
,
D.
, and
Fuchs
,
L.
,
2008
, “
Mixing in Circular and Non-Circular Jets in Crossflow
,”
Flow Turbul. Combust.
,
80
(
2
), pp.
255
283
.10.1007/s10494-007-9119-x
22.
Wegner
,
B.
,
Huai
,
Y.
, and
Sadiki
,
A.
,
2004
, “
Comparative Study of Turbulent Mixing in Jet in Cross-Flow Configurations Using LES
,”
Int. J. Heat Fluid Flow
,
25
(
5
), pp.
767
775
.10.1016/j.ijheatfluidflow.2004.05.015
23.
Colucci
,
P.
,
Jaberi
,
F.
,
Givi
,
P.
, and
Pope
,
S.
,
1998
, “
Filtered Density Function for Large Eddy Simulation of Turbulent Reacting Flows
,”
Phys. Fluids
,
10
(
2
), pp.
499
515
.10.1063/1.869537
24.
Afshari
,
A.
, and
Jaberi
,
F.
,
2005
,
Combustion Processes in Propulsion
,
Academic
,
New York
, Chap. IV.
25.
Afshari
,
A.
,
Jaberi
,
F. A.
, and
Shih
,
T. I.
,
2008
, “
Large-Eddy Simulations of Turbulent Flows in an Axisymmetric Dump Combustor
,”
AIAA J.
,
46
(
7
), pp.
1576
1592
.10.2514/1.25467
26.
Banaeizadeh
,
A.
,
Li
,
Z.
, and
Jaberi
,
F. A.
,
2011
, “
Compressible Scalar Filtered Mass Density Function Model for High-Speed Turbulent Flows
,”
AIAA J.
,
49
(
10
), pp.
2130
2143
.10.2514/1.J050779
27.
Jaberi
,
F.
,
Colucci
,
P.
,
James
,
S.
,
Givi
,
P.
, and
Pope
,
S.
,
1999
, “
Filtered Mass Density Function for Large-Eddy Simulation of Turbulent Reacting Flows
,”
J. Fluid Mech.
,
401
, pp.
85
121
.10.1017/S0022112099006643
28.
Jaberi
,
F. A.
,
1999
, “
Large Eddy Simulation of Turbulent Pre-Mixed Flame Via Filtered Mass Density Function
,”
AIAA
Paper No. 99-0199.10.2514/6.1999-199
29.
James
,
S.
, and
Jaberi
,
F.
,
2000
, “
Large Scale Simulations of Two-Dimensional Nonpremixed Methane Jet Flames
,”
Combust. Flame
,
123
(
4
), pp.
465
487
.10.1016/S0010-2180(00)00178-4
30.
Nik
,
M.
,
Yilmaz
,
S.
,
Givi
,
P.
,
Sheikhi
,
M. R. H.
, and
Pope
,
S.
,
2010
, “
Simulation of Sandia Flame D Using Velocity-Scalar Filtered Density Function
,”
AIAA J.
,
48
(
7
), pp.
1513
1522
.10.2514/1.J050154
31.
Raman
,
V.
, and
Pitsch
,
H.
,
2007
, “
A Consistent Les/Filtered-Density Function Formulation for the Simulation of Turbulent Flames With Detailed Chemistry
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
1711
1719
.10.1016/j.proci.2006.07.152
32.
Sheikhi
,
M.
,
Drozda
,
T.
,
Givi
,
P.
,
Jaberi
,
F.
, and
Pope
,
S.
,
2005
, “
Large Eddy Simulation of a Turbulent Nonpremixed Piloted Methane Jet Flame (Sandia Flame D)
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
549
556
.10.1016/j.proci.2004.08.028
33.
Yaldizli
,
M.
,
Mehravaran
,
K.
, and
Jaberi
,
F.
,
2010
, “
Large-Eddy Simulations of Turbulent Methane Jet Flames With Filtered Mass Density Function
,”
Int. J. Heat Mass Transfer
,
53
(
11
), pp.
2551
2562
.10.1016/j.ijheatmasstransfer.2009.12.061
34.
Yilmaz
,
S. L.
,
Nik
,
M.
,
Givi
,
P.
, and
Strakey
,
P. A.
,
2010
, “
Scalar Filtered Density Function for Large Eddy Simulation of a Bunsen Burner
,”
J. Propul. Power
,
26
(
1
), pp.
84
93
.10.2514/1.44600
35.
Gicquel
,
L. Y.
,
Givi
,
P.
,
Jaberi
,
F.
, and
Pope
,
S.
,
2002
, “
Velocity Filtered Density Function for Large Eddy Simulation of Turbulent Flows
,”
Phys. Fluids
,
14
(
3
), pp.
1196
1213
.10.1063/1.1436496
36.
Sheikhi
,
M.
,
Drozda
,
T.
,
Givi
,
P.
, and
Pope
,
S.
,
2003
, “
Velocity-Scalar Filtered Density Function for Large Eddy Simulation of Turbulent Flows
,”
Phys. Fluids
,
15
(
8
), pp.
2321
2337
.10.1063/1.1584678
37.
Sheikhi
,
M.
,
Givi
,
P.
, and
Pope
,
S.
,
2007
, “
Velocity-Scalar Filtered Mass Density Function for Large Eddy Simulation of Turbulent Reacting Flows
,”
Phys. Fluids
,
19
(
9
), p.
095106
.10.1063/1.2768953
38.
Givi
,
P.
,
2006
, “
Filtered Density Function for Subgrid Scale Modeling of Turbulent Combustion
,”
AIAA J.
,
44
(
1
), pp.
16
23
.10.2514/1.15514
39.
Madnia
,
C. K.
,
Jaberi
,
F. A.
, and
Givi
,
P.
,
2006
,
Handbook of Numerical Heat Transfer
,
Wiley
,
New York
, pp.
167
190
.
40.
Suh
,
J.
,
Frankel
,
S. H.
,
Mongeau
,
L.
, and
Plesniak
,
M. W.
,
2006
, “
Compressible Large Eddy Simulations of Wall-Bounded Turbulent Flows Using a Semi-Implicit Numerical Scheme for Low Mach Number Aeroacoustics
,”
J. Comput. Phys.
,
215
(
2
), pp.
526
551
.10.1016/j.jcp.2005.10.036
41.
Banaeizadeh
,
A.
,
Afshari
,
A.
,
Schock
,
H.
, and
Jaberi
,
F.
,
2013
, “
Large-Eddy Simulations of Turbulent Flows in Internal Combustion Engines
,”
Int. J. Heat Mass Transfer
,
60
(
1
), pp.
781
796
.10.1016/j.ijheatmasstransfer.2012.12.065
42.
Yoshizawa
,
A.
,
1986
, “
Statistical Theory for Compressible Turbulent Shear Flows, With the Application to Subgrid Modeling
,”
Phys. Fluids
,
29
(
7
), pp.
2152
2164
.10.1063/1.865552
43.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid‐Scale Eddy Viscosity Model
,”
Phys. Fluids A: Fluid Dyn.
,
3
(
7
), pp.
1760
1765
.10.1063/1.857955
44.
Moin
,
P. A.
,
Squires
,
K.
,
Cabot
,
W.
, and
Lee
,
S.
,
1991
, “
A Dynamic Subgrid‐Scale Model for Compressible Turbulence and Scalar Transport
,”
Phys. Fluids A: Fluid Dyn.
,
3
(
11
), pp.
2746
2757
.10.1063/1.858164
45.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
46.
Lele
,
S. K.
,
1992
, “
Compact Finite Difference Schemes With Spectral-Like Resolution
,”
J. Comput. Phys.
,
103
(
1
), pp.
16
42
.10.1016/0021-9991(92)90324-R
47.
Visbal
,
M. R.
, and
Gaitonde
,
D. V.
,
2001
, “
Very High-Order Spatially Implicit Schemes for Computational Acoustics on Curvilinear Meshes
,”
J. Comput. Acoust.
,
9
(
4
), pp.
1259
1286
.10.1142/S0218396X01000541
48.
Gottlieb
,
S.
,
Shu
,
C.-W.
, and
Tadmor
,
E.
,
2001
, “
Strong Stability-Preserving High-Order Time Discretization Methods
,”
SIAM Rev.
,
43
(
1
), pp.
89
112
.10.1137/S003614450036757X
49.
Gardiner
,
C.
,
1990
,
Handbook of Stochastic Methods (Springer Series in Synergetics)
,
Springer
,
New York
.
50.
Karlin
,
S.
, and
Taylor
,
H. M.
,
1981
,
A Second Course in Stochastic Processes
,
Academic
,
New York
.
51.
Kloeden
,
P. E.
,
Platen
,
E.
, and
Schurz
,
H.
,
1997
,
Numerical Solution of Stochastic Differential Equations Through Computer Experiments
,
Springer
,
New York
.
52.
Jones
,
W.
, and
Wille
,
M.
,
1996
, “
Large-Eddy Simulation of a Plane Jet in a Cross-Flow
,”
Int. J. Heat Fluid Flow
,
17
(
3
), pp.
296
306
.10.1016/0142-727X(96)00045-8
53.
Cavar
,
D.
, and
Meyer
,
K. E.
,
2012
, “
LES of Turbulent Jet in Cross-Flow: Part 1—A Numerical Validation Study
,”
Int. J. Heat Fluid Flow
,
36
, pp.
18
34
.10.1016/j.ijheatfluidflow.2011.12.009
54.
Fröhlich
,
J.
,
Mellen
,
C. P.
,
Rodi
,
W.
,
Temmerman
,
L.
, and
Leschziner
,
M. A.
,
2005
, “
Highly Resolved Large-Eddy Simulation of Separated Flow in a Channel With Streamwise Periodic Constrictions
,”
J. Fluid Mech.
,
526
, pp.
19
66
.10.1017/S0022112004002812
55.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University
,
Cambridge, UK
.
56.
Coussement
,
A.
,
Gicquel
,
O.
, and
Degrez
,
G.
,
2010
, “
Large Eddy Simulation of a Pulsed Jet in Crossflow
,”
AIAA
Paper No. 2010-561. 10.2514/6.2010-561
57.
Karagozian
,
A. R.
,
2010
, “
Transverse Jets and Their Control
,”
Prog. Energy Combust. Sci.
,
36
(
5
), pp.
531
553
.10.1016/j.pecs.2010.01.001
58.
Kim
,
K.
,
Kim
,
S.
, and
Yoon
,
S.
,
2000
, “
PIV Measurements of the Flow and Turbulent Characteristics of a Round Jet in Crossflow
,”
J. Visual.
,
3
(
2
), pp.
157
164
.10.1007/BF03182408
59.
Denev
,
J. A.
,
Fröhlich
,
J.
, and
Bockhorn
,
H.
,
2009
, “
Large Eddy Simulation of a Swirling Transverse Jet Into a Crossflow With Investigation of Scalar Transport
,”
Phys. Fluids
,
21
(
1
), p.
015101
.10.1063/1.3054148
60.
Kolář
,
V.
,
2007
, “
Vortex Identification: New Requirements and Limitations
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
638
652
.10.1016/j.ijheatfluidflow.2007.03.004
61.
Oslash
,
O.
,
Zcan
, and
Larsen
,
P. S.
,
2003
, “
Laser Doppler Anemometry Study of a Turbulent Jet in Crossflow
,”
AIAA J.
,
41
(
8
), pp.
1614
1616
.10.2514/2.2119
62.
Tobak
,
M.
, and
Peake
,
D.
,
1982
, “
Topology of Three-Dimensional Separated Flows
,”
Ann. Rev. Fluid Mech.
,
14
(
1
), pp.
61
85
.10.1146/annurev.fl.14.010182.000425
63.
Ricou
,
F.
, and
Spalding
,
D.
,
1961
, “
Measurements of Entertainment by Axisymmetrical Turbulent Jets
,”
J. Fluid Mech.
,
11
, pp.
21
32
.10.1017/S0022112061000834
64.
Eroglu
,
A.
, and
Breidenthal
,
R. E.
,
2001
, “
Structure, Penetration, and Mixing of Pulsed Jets in Crossflow
,”
AIAA J.
,
39
(
3
), pp.
417
423
.10.2514/2.1351
You do not currently have access to this content.