The auto-ignition process plays a major role in the combustion, performance, fuel economy, and emission in diesel engines. The auto-ignition quality of different fuels has been rated by its cetane number (CN) determined in the cooperative fuel research engine, according to ASTM D613. More recently, the ignition quality tester (IQT), a constant volume vessel, has been used to determine the derived cetane number (DCN) to avoid the elaborate, time consuming, and costly engine tests, according to ASTM D6890. The ignition delay (ID) period in these two standard tests and many investigations has been considered to be the time period between start of injection (SOI) and start of combustion (SOC). The ID values determined in different investigations can vary due to differences in instrumentation and definitions. This paper examines the different definitions and the parameters that effect ID period. In addition, the activation energy dependence on the ID definition is investigated. Furthermore, results of an experimental investigation in a single-cylinder research diesel engine will be presented, while the charge density is kept constant during the ID period. The global activation energy is determined and its sensitivity to the charge temperature is examined.

References

References
1.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
2.
Park
,
S. H.
,
Cha
,
J.
, and
Lee
,
C. H.
,
2012
, “
Impact of Biodiesel in Bioethanol Blended Diesel on the Engine Performance and Emissions Characteristics in Compression Ignition Engine
,”
Appl. Energy
,
99
, pp.
334
343
.10.1016/j.apenergy.2012.05.050
3.
Donkerbroek
,
A. J.
,
Boot
,
M. D.
,
Luijten
,
C. C. M.
,
Dam
,
N. J.
, and
ter Meulen
,
J. J.
,
2011
, “
Flame Lift-Off Length and Soot Production of Oxygenated Fuels in Relation With Ignition Delay in a DI Heavy-Duty Diesel Engine
,”
Combust. Flame
,
158
(
3
), pp.
525
538
.10.1016/j.combustflame.2010.10.003
4.
Henein
,
N.
, and
Bolt
,
J.
,
1967
, “
Ignition Delay in Diesel Engines
,”
SAE
Technical Paper No. 670007.10.4271/670007
5.
Kwon
,
S. I.
,
Arai
,
M.
, and
Hiroyasu
,
H.
,
1990
, “
Effects of Cylinder Temperature and Pressure on Ignition Delay in Direct Injection Diesel Engine
,”
Bull. MESJ
,
18
(
1
), pp. 3–16.
6.
Vasu
,
S. S.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2008
, “
Jet Fuel Ignition Delay Times: Shock Tube Experiments Over Wide Conditions and Surrogate Model Predictions
,”
Combust. Flame
,
152
(1–2), pp.
125
143
.10.1016/j.combustflame.2007.06.019
7.
Sung
,
C. S.
, and
Curran
,
H. J.
,
2014
, “
Using Rapid Compression Machines for Chemical Kinetics Studies
,”
Prog. Energy Combust. Sci.
,
44
, pp.
1
18
.10.1016/j.pecs.2014.04.001
8.
Henein
,
N. A.
, and
Bolt
,
J. A.
,
1969
, “
The Effect of Some Engine Variables on Ignition Delay and Other Combustion Phenomena in a Diesel Engine
,”
Proc. Inst. Mech. Eng.
,
184
(
10
), pp.
130
136
.10.1243/PIME_CONF_1969_184_327_02
9.
Kook
,
S.
,
Bae
,
C.
,
Miles
,
P.
,
Choi
,
D.
, and
Pickett
,
L. M.
,
2005
, “
The Influence of Charge Dilution and Injection Timing on Low-Temperature Diesel Combustion and Emissions
,”
SAE
Technical Paper No. 2005-01-3837.10.4271/2005-01-3837
10.
Jayakumar
,
C.
,
Zheng
,
Z.
,
Joshi
,
U. M.
,
Henein
,
N.
,
Bryzik
,
W.
, and
Sattler
,
E.
,
2011
,
Effect of Inlet Air Temperature on Auto-Ignition of Fuels With Different Cetane Number and Volatility
,”
ASME
Paper No. ICEF2011-60141.10.1115/ICEF2011-60141
11.
ASTM, 2008, “Standard Test Method for Determination of Ignition Delay and Derived Cetane Number (DCN) of Diesel Fuel Oils by Combustion in a Constant Volume Chamber,”
ASTM
International, West Conshohocken, PA, ASTM Standard No. D6890-08.10.1520/D6890-08
12.
Zheng
,
Z.
,
Badawy
,
T.
,
Henein
,
N. A.
, and
Sattler
,
E.
,
2013
, “
Investigation of Physical and Chemical Delay Periods of Different Fuels in the Ignition Quality Tester
,”
ASME J. Eng. Gas Turbines Power
,
135
(
6
), p.
061501
.10.1115/1.4023607
13.
Zaidi
,
K.
,
Andrews
,
G.
, and
Greenhough
,
J.
,
1998
, “
Diesel Fumigation Partial Premixing for Reducing Ignition Delay and Amplitude of Pressure Fluctuations
,”
SAE
Technical Paper No. 980535.10.4271/980535
14.
Assanis
,
D. N.
,
Filipi
,
Z. S.
,
Fiveland
,
S. B.
, and
Syrimis
,
M.
,
2003
, “
A Predictive Ignition Delay Correlation Under Steady-State and Transient Operation of a Direct Injection Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
125
(
2
), pp.
450
457
.10.1115/1.1563238
15.
Jayakumar
,
C.
,
Zheng
,
Z.
,
Joshi
,
U.
,
Bryzik
,
W.
,
Henein
,
N.
, and
Sattler
,
E.
,
2012
, “
Effect of Intake Pressure and Temperature on the Auto-Ignition of Fuels With Different Cetane Number and Volatility
,”
SAE
Technical Paper No. 2012-01-1317.10.4271/2012-01-1317
16.
Rodriguez
,
R. P.
,
Sierens
,
R.
, and
Verhelst
,
S.
,
2011
, “
Ignition Delay in a Palm Oil and Rapeseed Oil Biodiesel Fuelled Engine and Predictive Correlations for the Ignition Delay Period
,”
Fuel
,
90
(
2
), pp.
766
772
.10.1016/j.fuel.2010.10.027
17.
Colban
,
W.
,
Miles
,
P.
, and
Oh
,
S.
,
2007
, “
Effect of Intake Pressure on Performance and Emissions in an Automotive Diesel Engine Operating in Low Temperature Combustion Regimes
,”
SAE
Technical Paper No. 2007-01-4063.10.4271/2007-01-4063
18.
Dahodwala
,
M.
,
Nagaraju
,
V.
,
Acharya
,
K.
,
Bryzik
,
W.
, and
Henein
,
N. A.
,
2011
, “
Effect of Using Biodiesel (B-20) and Combustion Phasing on Combustion and Emissions in a HSDI Diesel Engine
,”
SAE
Technical Paper No. 2011-01-1203.10.4271/2011-01-1203
19.
Schihl
,
P.
,
Hoogterp-Decker
,
L.
, and
Gingrich
,
E.
,
2012
, “
The Ignition Behavior of a Coal to Liquid Fischer-Tropsch Jet Fuel in a Military Relevant Single Cylinder Diesel Engine
,”
SAE Int. J. Fuels Lubr.
,
5
(
2
), pp.
785
802
.10.4271/2012-01-1197
20.
Aghav
,
Y.
,
Thatte
,
V.
,
Kumar
,
M.
,
Lakshminarayanan
,
P.
, and
Babu
,
M. K. G.
,
2008
, “
Predicting Ignition Delay and HC Emission for DI Diesel Engine Encompassing EGR and Oxygenated Fuels
,”
SAE
Technical Paper No. 2008-28-0050.10.4271/2008-28-0050
21.
Lata
,
D. B.
, and
Misra
,
A.
,
2011
, “
Analysis of Ignition Delay Period of a Dual Fuel Diesel Engine With Hydrogen and LPG as Secondary Fuel
,”
Int. J. Hydrogen Energy
,
36
(
5
), pp.
3746
3756
.10.1016/j.ijhydene.2010.12.075
22.
Murphy
,
L.
, and
Rothamer
,
D.
,
2011
, “
Effects of Cetane Number on Jet Fuel Combustion in a Heavy-Duty Compression Ignition Engine at High Load
,”
SAE
Technical Paper No. 2011-01-0335.10.4271/2011-01-0335
23.
Cowart
,
J.
,
Carr
,
M.
,
Caton
,
P.
,
Stoulig
,
L.
,
Luning-Prak
,
D.
,
Moore
,
A.
, and
Hamilton
,
L.
,
2011
, “
High Cetane Fuel Combustion Performance in a Conventional Military Diesel Engine
,”
SAE
Int. J. Fuels Lubr.,
4
(
1
), pp.
34
47
.10.4271/2011-01-0334
24.
Han
,
D.
,
Ickes
,
A. M.
,
Bohac
,
S. V.
,
Huang
,
Z.
, and
Assanis
,
D. N.
,
2011
, “
Premixed Low-Temperature Combustion of Blends of Diesel and Gasoline in a High Speed Compression Ignition Engine
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3039
3046
.10.1016/j.proci.2010.07.045
25.
Janssen
,
A.
,
Pischinger
,
S.
, and
Muether
,
M.
,
2010
, “
Potential of Cellulose-Derived Biofuels for Soot Free Diesel Combustion
,”
SAE Int. J. Fuels Lubr.
,
3
(
1
), pp.
70
84
.10.4271/2010-01-0335
26.
Minagawa
,
T.
,
Kosaka
,
H.
, and
Kamimoto
,
T.
,
2000
, “
A Study on Ignition Delay of Diesel Fuel Spray Via Numerical Simulation
,”
SAE
Technical Paper No. 2000-01-1892.10.4271/2000-01-1892
27.
Taylor
,
J.
,
McCormick
,
R.
, and
Clark
,
W.
,
2004
, “
Report on the Relationship Between Molecular Structure and Compression Ignition Fuels, Both Conventional and HCCI
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/MP-540-36726.
You do not currently have access to this content.