In response to the limited resources of fossil fuels as well as to their combustion contributing to global warming through CO2 emissions, it is currently discussed to which extent future energy demands can be satisfied by using biomass and biogenic by-products, e.g., by cofiring. However, new concepts and new unconventional fuels for electric power generation require a re-investigation of at least the gas turbine burner if not the gas turbine itself to ensure a safe operation and a maximum range in tolerating fuel variations and combustion conditions. Within this context, alcohols, in particular, ethanol, are of high interest as alternative fuel. Presently, the use of ethanol for power generation—in decentralized (microgas turbines) or centralized gas turbine units, neat, or cofired with gaseous fuels like natural gas (NG) and biogas—is discussed. Chemical kinetic modeling has become an important tool for interpreting and understanding the combustion phenomena observed, for example, focusing on heat release (burning velocities) and reactivity (ignition delay times). Furthermore, a chemical kinetic reaction model validated by relevant experiments performed within a large parameter range allows a more sophisticated computer assisted design of burners as well as of combustion chambers, when used within computational fluid dynamics (CFD) codes. Therefore, a detailed experimental and modeling study of ethanol cofiring to NG will be presented focusing on two major combustion properties within a relevant parameter range: (i) ignition delay times measured in a shock tube device, at ambient (p = 1 bar) and elevated (p = 4 bar) pressures, for lean (φ = 0.5) and stoichiometric fuel–air mixtures, and (ii) laminar flame speed data at several preheat temperatures, also for ambient and elevated pressure, gathered from literature. Chemical kinetic modeling will be used for an in-depth characterization of ignition delays and flame speeds at technical relevant conditions. An extensive database will be presented identifying the characteristic differences of the combustion properties of NG, ethanol, and ethanol cofired to NG.

References

References
1.
IEA
,
2010
, “
World Energy Outlook 2010
,”
International Energy Agency (IEA)
, Paris.
2.
Kick
,
Th.
,
Kathrotia
,
T.
,
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
,
2011
, “
An Experimental and Modeling Study of Laminar Flame Speeds of Alternative Aviation Fuels
,”
ASME
Paper No. GT2011-45606.10.1115/GT2011-45606
3.
Kick
,
Th.
,
Herbst
,
J.
,
Kathrotia
,
T.
,
Marquetand
,
J.
,
Braun-Unkhoff
,
M.
,
Naumann
,
C.
, and
Riedel
,
U.
,
2012
, “
An Experimental and Modeling Study of Burning Velocities of Possible Future Synthetic Jet Fuels
,”
Energy
,
43
(
1
), pp.
111
123
.10.1016/j.energy.2012.01.035
4.
Mzé Ahmed
,
A.
,
Dagaut
,
P.
,
Hadj-Ali
,
K.
,
Dayma
,
G.
,
Kick
,
T.
,
Herbst
,
J.
,
Kathrotia
,
T.
,
Braun-Unkhoff
,
M.
,
Herzler
,
J.
,
Naumann
,
C.
, and
Riedel
,
U.
,
2012
, “
Oxidation of a Coal-to-Liquid Synthetic Jet Fuel: Experimental and Chemical Kinetic Modeling Study
,”
Energy Fuels
,
26
(
10
), pp.
6070
6079
.10.1021/ef3009585
5.
Dagaut
,
P.
,
Karsenty
,
F.
,
Dayma
,
G.
,
Diévart
,
P.
,
Hadj-Ali
,
K.
, and
Mzé-Ahmed
,
A.
,
2013
, “
Experimental and Detailed Kinetic Model for the Oxidation of a Gas to Liquid (GtL) Jet Fuel
,”
Combust. Flame
,
161
(
3
), pp.
835
847
.10.1016/j.combustflame.2013.08.015
6.
Herzler
,
J.
,
Herbst
,
J.
,
Kick
,
Th.
,
Naumann
,
C.
,
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
,
2012
, “
Alternative Fuels Based on Biomass: An Investigation on Combustion Properties of Product Gases
,”
ASME J. Eng. Gas Turbines Power
,
135
(
3
), p.
031401
.10.1115/1.4007817
7.
Braun-Unkhoff
,
M.
,
Kick
,
Th.
,
Frank
,
P.
, and
Aigner
,
M.
,
2007
, “
An Investigation on Laminar Flame Speed as Part of Needed Combustion Characteristics of Biomass-Based Syngas Fuels
,”
ASME
Paper No. GT2007-27479.10.1115/GT2007-27479
8.
Braun-Unkhoff
,
M.
,
Kick
,
Th.
,
Herzler
,
J.
,
Herbst
,
J.
,
Naumann
,
C.
,
Frank
,
P.
, and
Aigner
,
M.
,
2007
, “
Measurements of Combustion Relevant Properties of Biogenic Gas Mixtures as Basis for Their Use in Modern Gas Turbines
,”
15th European Biomass Conference and Exhibition
, Berlin, May 7–11, pp.
958
961
.
9.
Panne
,
T.
,
Widenhorn
,
A.
,
Aigner
,
M.
, and
Masgrau
,
M.
,
2009
, “
Operation Flexibility and Efficiency Enhancement for a Personal 7 kW Gas Turbine System
,”
ASME
Paper No. GT2009-59048.10.1115/GT2009-59048
10.
Herzler
,
J.
,
Braun-Unkhoff
,
M.
, and
Naumann
,
C.
,
2011
, “
Study of Combustion Properties of Product Gases From Wood Gasification and Anaerobic Algae Fermentation
,”
19th European Biomass Conference and Exhibition
(
19th EU BC&E
), Berlin, June 6–9, pp.
836
840
.10.5071/19thEUBCE2011-OA1.3
11.
Methling
,
T.
,
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
,
2013
, “
A Chemical-Kinetic Investigation of Combustion Properties of Alternative Fuels—A Step Towards a More Efficient Power Generation
,”
ASME
Paper No. GT2013-64994.10.1115/GT2013-64994
12.
Hohloch
,
M.
,
Widenhorn
,
A.
,
Lebküchner
,
D.
,
Panne
,
T.
, and
Aigner
,
M.
,
2008
, “
Micro Gas Turbine Test Rig for Hybrid Power Plant Application
,”
ASME
Paper No. GT2008-50443.10.1115/GT2008-50443
13.
Böhm
,
H.
, and
Braun-Unkhoff
,
M.
,
2008
, “
Numerical Study on the Effect of Oxygenated Blending Compounds on Soot Formation
,”
Combust. Flame
,
153
(
1–2
), pp.
84
96
.10.1016/j.combustflame.2008.01.002
14.
Johnson
,
M. V.
,
Scott Goldsborough
,
S.
,
Serinyel
,
Z.
,
O'Toole
,
P.
,
Larkin
,
E.
,
O'Malley
,
G.
, and
Curran
,
H. J.
,
2009
, “
A Shock Tube Study of n- and Iso-Propanol Ignition
,”
Energy Fuels
,
23
(
12
), pp.
5886
5898
.10.1021/ef900726j
15.
Goldenberg
,
J.
,
Coelho
,
S. T.
,
Nastari
,
P. M.
, and
Lucon
,
O.
,
2004
, “
Ethanol Learning Curve—The Brazilian Experience
,”
Biomass Bioenergy
,
26
(
3
), pp.
301
304
.10.1016/S0961-9534(03)00125-9
16.
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
, “
Alternative Fuels in Aviation
,”
CEAS Aeronaut. J.
(online). 10.1007/s13272-014-0131-2
17.
Herzler
,
J.
, and
Naumann
,
C.
,
2007
, “
Shock Tube Study of the Ignition of Lean CO/H2 Fuel Blends at Intermediate Temperatures and High Pressures
,”
Combust. Sci. Technol.
,
180
(
10–11
), pp.
2015
2028
.10.1080/00102200802269715
18.
Beekmann
,
J.
,
Chaumeix
,
N.
,
Dagaut
,
P.
,
Egolfopoulos
,
F.
,
Foucher
,
F.
,
de Goey
,
P.
,
Halter
,
F.
,
Konnov
,
A.
,
Mounaim-Rousselle
,
C.
,
Pitsch
,
H.
,
Renou
,
B.
,
Varea
,
A.
, and
Volkov
,
E.
,
2013
, “
Collaborative Study for Accurate Measurements of Laminar Burning Velocity
,”
6th European Combustion Meeting (ECM)
, Lund, Sweden, June 25–28, p.
34
.
19.
Egolfopoulos
,
F.
,
Du
,
D. X.
, and
Law
,
C. K.
,
1992
, “
A Study on Ethanol Oxidation Kinetics in Laminar Premixed Flames, Flow Reactors, and Shock Tubes
,”
Proc. Combust. Inst.
,
24
(
1
), pp.
833
841
.10.1016/S0082-0784(06)80101-3
20.
Dembowski
,
J.
,
2012
, “
Experimentelle Ermittlung der Zündverzugszeiten von Alkoholen Mittels Stoßrohrversuchen und Validierung Aktueller Reaktionsmechanismen
,” Studienarbeit, Stuttgart University, Stuttgart, Germany.
21.
Karle
,
J.
,
2013
, “
Koverbrennung von Alkoholen mit Erdgas: Stoßrohrexperimente zur Experimentellen Ermittlung der Zündverzugszeiten und Validierung Aktueller Reaktionsmechanismen
,” Bachelor thesis, Stuttgart University, Stuttgart, Germany.
22.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
J.
, and
Qin
,
Z.
, “
GRI 3.0 Mechanism, Version 3.0 7/2030/99
,” Gas Research Institute, Chicago, IL, http://www.me.berkeley.edu/gri_mech
23.
Marinov
,
N.
,
1999
, “
A Detailed Chemical Kinetic Model for High Temperature Ethanol Oxidation
,”
Int. J. Chem. Kinet.
,
31
(
3
), pp.
183
220
.10.1002/(SICI)1097-4601(1999)31:3<183::AID-KIN3>3.0.CO;2-X
24.
Herzler
,
J.
, and
Naumann
,
C.
,
2009
, “
Shock-Tube Study of the Ignition of Methane/Ethane/Hydrogen Mixtures With Hydrogen Contents From 0 to 100% at Different Pressures
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
213
220
.10.1016/j.proci.2008.07.034
25.
Eberius
,
H.
, and
Kick
,
Th.
,
1992
, “
Stabilization of Premixed, Conical Methane Flames at High Pressure
,”
Ber. Bunsenges. Phys. Chem.
,
96
(
10
), pp.
1416
1419
.10.1002/bbpc.19920961013
26.
Smith
,
G. P.
,
Luque
,
J.
,
Chung
,
P.
,
Jeffries
,
J. B.
, and
Crosley
,
D. R.
,
2002
, “
Low Pressure Flame Determinations of Rate Constants for OH(A) and CH(A) Chemiluminescence
,”
Combust. Flame
,
131
(
1–2
), pp.
59
69
.10.1016/S0010-2180(02)00399-1
27.
Braun-Unkhoff
,
M.
,
Slavinskaya
,
N. A.
, and
Aigner
,
M.
,
2009
, “
Detailed and Reduced Reaction Mechanism of Biomass-Based Syngas Fuels
,”
ASME
Paper No. GT2009-60214.10.1115/GT2009-60214
28.
DLR-NGQ: Project Report (DLR, ALSTOM; EnBW) on Natural Gas Quality (2005).
29.
Petersen
,
E. L.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
1999
, “
Kinetics Modeling of Shock-Induced Ignition in Low-Dilution CH4/O2 Mixtures at High Pressures and Intermediate Temperatures
,”
Combust. Flame
,
117
(
1–2
), pp.
272
290
.10.1016/S0010-2180(98)00111-4
30.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
,
Chaos
,
M.
,
Dryer
,
F. L.
, and
Scire
,
J. J.
, Jr.
,
2007
, “
A Comprehensive Kinetic Mechanism for CO, CH2O, and CH3OH Combustion
,”
Int. J. Chem. Kinet.
,
39
(
3
), pp.
109
136
.10.1002/kin.20218
31.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
,
1992
, “
PREMIX: One-Dimensional Premixed Laminar Flame Code, CHEMKIN-II Version 2.5b
,” Sandia National Laboratories, Livermore, CA.
32.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
,
1989
, “
Chemkin II: A FORTRAN Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics
,” Sandia Laboratories Report, Livermore, CA, Report No. SAND89-8009B.
33.
Kee
,
R. J.
,
Dixon-Lewis
,
G.
,
Warnatz
,
J.
,
Coltrin
,
M. E.
, and
Miller
,
J. A.
,
1986
, “
The Chemkin Transport Database
,” Sandia National Laboratories, Livermore, CA, Report No. SAND86-8246.
34.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
,
1987
, “
CHEMKIN: The Chemkin Thermodynamic Database
,” Sandia National Laboratories, Livermore, CA, Report No. SAND87-8215.
35.
DedeBio, project funded by Stiftung Energieforschung Baden-Württemberg, FKZ A 283 09.
You do not currently have access to this content.