Gas turbines are faced with new challenges of increasing flexibility in their operation while reducing their life cycle costs, leading to new research priorities and challenges. One of these challenges involves the establishment of high fidelity, accurate, and computationally efficient engine performance simulation, diagnosis, and prognosis schemes, which will be able to handle and address the gas turbine's ever-growing flexible and dynamic operational characteristics. Predicting accurately the performance of gas turbines depends on detailed understanding of the engine components behavior that is captured by component performance maps. The limited availability of these maps due to their proprietary nature has been commonly managed by adapting default generic maps in order to match the targeted off-design or engine degraded measurements. Although these approaches might be suitable in small range of operating conditions, further investigation is required to assess the capabilities of such methods for use in gas turbine diagnosis under dynamic transient conditions. The diversification of energy portfolio and introduction of distributed generation in electrical energy production have created need for such studies. The reason is not only the fluctuation in energy demand but also more importantly the fact that renewable energy sources, which work with conventional fossil fuel based sources, supply the grid with varying power that depend, for example, on solar irradiation. In this paper, modeling methods for the compressor and turbine maps are presented for improving the accuracy and fidelity of the engine performance prediction and diagnosis. The proposed component map fitting methods simultaneously determine the best set of equations for matching the compressor and the turbine map data. The coefficients that determine the shape of the component map curves have been analyzed and tuned through a nonlinear multi-objective optimization scheme in order to meet the targeted set of engine measurements. The proposed component map modeling methods are developed in the object oriented matlab/simulink environment and integrated with a dynamic gas turbine engine model. The accuracy of the methods is evaluated for predicting multiple component degradations of an engine at transient operating conditions. The proposed adaptive diagnostics method has the capability to generalize current gas turbine performance prediction approaches and to improve performance-based diagnostic techniques.
Skip Nav Destination
Article navigation
September 2015
Research-Article
Transient Gas Turbine Performance Diagnostics Through Nonlinear Adaptation of Compressor and Turbine Maps
Elias Tsoutsanis,
Elias Tsoutsanis
Department of Electrical Engineering,
College of Engineering,
Doha,
e-mail: [email protected]
College of Engineering,
Qatar University
,P.O. Box 2713
,Doha,
Qatar
e-mail: [email protected]
Search for other works by this author on:
Nader Meskin,
Nader Meskin
Department of Electrical Engineering,
College of Engineering,
Doha,
e-mail: [email protected]
College of Engineering,
Qatar University
,P.O. Box 2713
,Doha,
Qatar
e-mail: [email protected]
Search for other works by this author on:
Mohieddine Benammar,
Mohieddine Benammar
Department of Electrical Engineering,
College of Engineering,
Doha,
e-mail: [email protected]
College of Engineering,
Qatar University
,P.O. Box 2713
,Doha,
Qatar
e-mail: [email protected]
Search for other works by this author on:
Khashayar Khorasani
Khashayar Khorasani
Department of Electrical and
Computer Engineering,
e-mail: [email protected]
Computer Engineering,
Concordia University
,Montreal QC H3G 1M8
, Canada
e-mail: [email protected]
Search for other works by this author on:
Elias Tsoutsanis
Department of Electrical Engineering,
College of Engineering,
Doha,
e-mail: [email protected]
College of Engineering,
Qatar University
,P.O. Box 2713
,Doha,
Qatar
e-mail: [email protected]
Nader Meskin
Department of Electrical Engineering,
College of Engineering,
Doha,
e-mail: [email protected]
College of Engineering,
Qatar University
,P.O. Box 2713
,Doha,
Qatar
e-mail: [email protected]
Mohieddine Benammar
Department of Electrical Engineering,
College of Engineering,
Doha,
e-mail: [email protected]
College of Engineering,
Qatar University
,P.O. Box 2713
,Doha,
Qatar
e-mail: [email protected]
Khashayar Khorasani
Department of Electrical and
Computer Engineering,
e-mail: [email protected]
Computer Engineering,
Concordia University
,Montreal QC H3G 1M8
, Canada
e-mail: [email protected]
Contributed by the Aircraft Engine Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received November 18, 2014; final manuscript received January 27, 2015; published online February 25, 2015. Editor: David Wisler.
J. Eng. Gas Turbines Power. Sep 2015, 137(9): 091201 (12 pages)
Published Online: September 1, 2015
Article history
Received:
November 18, 2014
Revision Received:
January 27, 2015
Online:
February 25, 2015
Citation
Tsoutsanis, E., Meskin, N., Benammar, M., and Khorasani, K. (September 1, 2015). "Transient Gas Turbine Performance Diagnostics Through Nonlinear Adaptation of Compressor and Turbine Maps." ASME. J. Eng. Gas Turbines Power. September 2015; 137(9): 091201. https://doi.org/10.1115/1.4029710
Download citation file:
Get Email Alerts
Foreign Object Damage of Environmental Barrier Coatings Subjected to CMAS Attack
J. Eng. Gas Turbines Power
Generative deep learning on images of thermo-mechanical simulation results
J. Eng. Gas Turbines Power
Related Articles
A Detailed Modular Governor-Turbine Model for Multiple-Spool Gas Turbine With Scrutiny of Bleeding Effect
J. Eng. Gas Turbines Power (November,2017)
Dynamic Simulation of Full Startup Procedure of Heavy-Duty Gas Turbines
J. Eng. Gas Turbines Power (July,2002)
Gas Turbine Engine Behavioral Modeling
J. Eng. Gas Turbines Power (December,2015)
An Adaptation Approach for Gas Turbine Design-Point Performance Simulation
J. Eng. Gas Turbines Power (October,2006)
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Performance Testing of Combined Cycle Power Plant
Handbook for Cogeneration and Combined Cycle Power Plants, Second Edition
The Special Characteristics of Closed-Cycle Gas Turbines
Closed-Cycle Gas Turbines: Operating Experience and Future Potential