Gas turbines are faced with new challenges of increasing flexibility in their operation while reducing their life cycle costs, leading to new research priorities and challenges. One of these challenges involves the establishment of high fidelity, accurate, and computationally efficient engine performance simulation, diagnosis, and prognosis schemes, which will be able to handle and address the gas turbine's ever-growing flexible and dynamic operational characteristics. Predicting accurately the performance of gas turbines depends on detailed understanding of the engine components behavior that is captured by component performance maps. The limited availability of these maps due to their proprietary nature has been commonly managed by adapting default generic maps in order to match the targeted off-design or engine degraded measurements. Although these approaches might be suitable in small range of operating conditions, further investigation is required to assess the capabilities of such methods for use in gas turbine diagnosis under dynamic transient conditions. The diversification of energy portfolio and introduction of distributed generation in electrical energy production have created need for such studies. The reason is not only the fluctuation in energy demand but also more importantly the fact that renewable energy sources, which work with conventional fossil fuel based sources, supply the grid with varying power that depend, for example, on solar irradiation. In this paper, modeling methods for the compressor and turbine maps are presented for improving the accuracy and fidelity of the engine performance prediction and diagnosis. The proposed component map fitting methods simultaneously determine the best set of equations for matching the compressor and the turbine map data. The coefficients that determine the shape of the component map curves have been analyzed and tuned through a nonlinear multi-objective optimization scheme in order to meet the targeted set of engine measurements. The proposed component map modeling methods are developed in the object oriented matlab/simulink environment and integrated with a dynamic gas turbine engine model. The accuracy of the methods is evaluated for predicting multiple component degradations of an engine at transient operating conditions. The proposed adaptive diagnostics method has the capability to generalize current gas turbine performance prediction approaches and to improve performance-based diagnostic techniques.

References

1.
Siemens
,
2013
, “
Flex Power Services for Siemens Fossil Power Plants
,” see also http://www.energy.siemens.com/
2.
GE
,
2012
, “
FlexEfficiency 60: A New Standard of High Efficiency and Operational Flexibility Portfolio
,” General Electric Co., Fairfield, CT, http://www.wcsawma.org/wp-content/uploads/2013/01/Andrew-Dicke-GE-Energy.pdf
3.
Merrington
,
G.
,
1989
, “
Fault Diagnosis of Gas Turbine Engines From Transient Data
,”
ASME J. Gas Turbines Power
,
111
(
2
), pp.
237
243
.10.1115/1.3240242
4.
Merrington
,
G.
,
Kwon
,
O. K.
,
Goodwin
,
G.
, and
Carlsson
,
B.
,
1991
, “
Fault Detection and Diagnosis in Gas Turbines
,”
ASME J. Gas Turbines Power
,
113
(
2
), pp.
276
282
.10.1115/1.2906559
5.
Li
,
Y. G.
,
2003
, “
A Gas Turbine Diagnostic Approach With Transient Measurements
,”
Proc. Inst. Mech. Eng., A: J. Power Energy
,
217
(
2
), pp.
169
177
.10.1243/09576500360611317
6.
Sampath
,
S.
,
Li
,
Y. G.
,
Ogaji
,
S.
, and
Singh
,
R.
,
2003
, “
Fault Diagnosis of a Two Spool Turbo-Fan Engine Using Transient Data: A Genetic Algorithm Approach
,”
ASME
Paper No. GT2003-38300.10.1115/GT2003-38300
7.
Simmons
,
J.
, and
Danai
,
K.
,
2012
, “
In-Flight Isolation of Degraded Engine Components by Shape Comparison of Transient Outputs
,”
ASME J. Gas Turbines Power
,
134
(
6
), p.
061602
.10.1115/1.4005814
8.
Borguet
,
S.
,
Henriksson
,
M.
,
McKelvey
,
T.
, and
Léonard
,
O.
,
2011
, “
A Study on Engine Health Monitoring in the Frequency Domain
,”
ASME J. Gas Turbines Power
,
133
(
8
), p.
081604
.10.1115/1.4002832
9.
Volponi
,
A.
,
2014
, “
Gas Turbine Engine Health Management: Past, Present, and Future Trends
,”
ASME J. Gas Turbines Power
,
136
(
5
), p.
051201
.10.1115/1.4026126
10.
Kurzke
,
J.
,
1996
, “
How to Get Component Maps for Aircraft Gas Turbine Performance Calculations
,”
ASME
Paper No. 96-GT-164.
11.
Ghorbanian
,
K.
, and
Gholamrezaei
,
M.
,
2009
, “
An Artificial Neural Network Approach to Compressor Performance Prediction
,”
J. Appl. Energy
,
86
(
7
), pp.
1210
1221
.10.1016/j.apenergy.2008.06.006
12.
Yu
,
Y.
,
Chen
,
L.
,
Sun
,
F.
, and
Wu
,
C.
,
2007
, “
Neural-Network Based Analysis and Prediction of a Compressor's Characteristic Performance Map
,”
J. Appl. Energy
,
81
(
1
), pp.
48
55
.10.1016/j.apenergy.2006.04.005
13.
Drummond
,
C.
, and
Davison
,
C.
,
2009
, “
Capturing the Shape Variance in Gas Turbine Compressor Maps
,”
ASME
Paper No. GT2009-60141.10.1115/GT2009-60141
14.
Kong
,
C.
,
Ki
,
J.
, and
Kang
,
M.
,
2003
, “
A New Scaling Method for Component Maps of Gas Turbine Using System Identification
,”
ASME J. Gas Turbines Power
,
125
(
4
), pp.
979
985
.10.1115/1.1610014
15.
Li
,
Y. G.
, and
Pilidis
,
P.
,
2010
, “
GA-Based Design-Point Performance Adaptation and Its Comparison With ICM-Based Approach
,”
J. Appl. Energy
,
87
(
1
), pp.
340
348
.10.1016/j.apenergy.2009.05.034
16.
Sieros
,
G.
,
Stamatis
,
A.
, and
Mathioudakis
,
K.
,
1997
, “
Jet Engine Component Maps for Performance Modeling and Diagnosis
,”
AIAA J. Propul. Power
,
13
(
5
), pp.
665
674
.10.2514/2.5218
17.
Misté
,
G.
, and
Benini
,
E.
,
2014
, “
Turbojet Engine Performance Tuning With a New Map Adaptation Concept
,”
ASME J. Gas Turbines Power
,
136
(
7
), p.
071202
.10.1115/1.4026548
18.
Tsoutsanis
,
E.
,
Meskin
,
N.
,
Benammar
,
M.
, and
Khorasani
,
K.
,
2014
, “
An Efficient Component Map Generation Method for Prediction of Gas Turbine Performance
,”
ASME
Paper No. GT2014-25753.10.1115/GT2014-25753
19.
Jones
,
G.
,
Pilidis
,
P.
, and
Curnock
,
B.
,
2002
, “
Extrapolation of Compressor Characteristics to the Low-Speed Region for Sub-Idle Performance Modelling
,”
ASME
Paper No. GT2002-30649.10.1115/GT2002-30649
20.
Sethi
,
V.
,
Doulgeris
,
G.
,
Pilidis
,
P.
,
Nind
,
A.
,
Doussinault
,
M.
, and
Cobas
,
P.
,
2013
, “
The Map Fitting Tool Methodology: Gas Turbine Compressor Off-Design Performance Modeling
,”
ASME J. Turbomach.
,
135
(
6
), p.
061010
.10.1115/1.4023903
21.
Kong
,
C.
,
Kho
,
S.
, and
Ki
,
J.
,
2004
, “
Component Map Generation of a Gas Turbine Using Genetic Algorithms
,”
ASME J. Gas Turbines Power
,
128
(
1
), pp.
92
96
.10.1115/1.2032431
22.
Li
,
Y. G.
,
Ghafir
,
M. F. A.
,
Huang
,
K.
,
Feng
,
X.
,
Wang
,
L.
,
Singh
,
R.
, and
Zhang
,
W.
,
2012
, “
Improved Multiple Point Nonlinear Genetic Algorithm Based Performance Adaptation Using Least Square Method
,”
ASME J. Gas Turbines Power
,
134
(
3
), p.
031701
.10.1115/1.4004395
23.
Tsoutsanis
,
E.
,
Li
,
Y. G.
,
Pilidis
,
P.
, and
Newby
,
M.
,
2012
, “
Part-Load Performance of Gas Turbines: Part 1—A Novel Compressor Map Generation Approach Suitable for Adaptive Simulation
,”
ASME
Paper No. GTINDIA2012-9580.10.1115/GTINDIA2012-9580
24.
Tsoutsanis
,
E.
,
Li
,
Y. G.
,
Pilidis
,
P.
, and
Newby
,
M.
,
2012
, “
Part-Load Performance of Gas Turbines: Part 2. Multi-Point Adaptation With Compressor Map Generation and GA Optimization
,”
ASME
Paper No. GTINDIA2012-9581.10.1115/GTINDIA2012-9581
25.
Vanini
,
Z. S.
,
Meskin
,
N.
, and
Khorasani
,
K.
,
2014
, “
Multiple-Model Sensor and Components Fault Diagnosis in Gas Turbine Engines Using Autoassociative Neural Networks
,”
ASME J. Gas Turbines Power
,
136
(
9
), p.
091603
.10.1115/1.4027215
26.
Ganguli
,
R.
,
2012
,
Gas Turbine Diagnostics: Signal Processing and Fault Isolation
,
CRC Press
,
Boca Raton, FL
.
27.
Tsoutsanis
,
E.
,
Meskin
,
N.
,
Benammar
,
M.
, and
Khorasani
,
K.
,
2014
, “
A Component Map Tuning Method for Performance Prediction and Diagnostics of Gas Turbine Compressors
,”
J. Appl. Energy
,
135
, pp.
572
585
.10.1016/j.apenergy.2014.08.115
28.
EA Internacional
,
2014
, “
PROOSIS, Propulsion Object-Oriented Simulation Software
,” Empresarios Agrupados Internacional, Madrid, http://www.ecosimpro.com/description_proosis.php
29.
Tsoutsanis
,
E.
,
Meskin
,
N.
,
Benammar
,
M.
, and
Khorasani
,
K.
,
2013
, “
Dynamic Performance Simulation of an Aeroderivative Gas Turbine Using the matlab/simulink Environment
,”
ASME
Paper No. IMECE2013-64102.10.1115/IMECE2013-64102
30.
matlab
,
2014
,
Version 8.3 (R2014a)
,
The MathWorks, Inc.
,
Natick, MA
.
31.
Fawke
,
A. J.
, and
Saravanamuttoo
,
H. I. H.
,
1971
, “
Digital Computer Methods for Prediction of Gas Turbine Dynamic Response
,”
SAE
Technical Paper No. 710550.10.4271/710550
32.
Lagarias
,
J.
,
Reeds
,
J.
,
Wright
,
M.
, and
Wright
,
P.
,
1998
, “
Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions
,”
SIAM J. Optim.
,
9
(
1
), pp.
112
147
.10.1137/S1052623496303470
33.
Li
,
Y. G.
, and
Nilkitsaranont
,
P.
,
2009
, “
Gas Turbine Performance Prognostic for Condition-Based Maintenance
,”
J. Appl. Energy
,
86
(
10
), pp.
2152
2161
.10.1016/j.apenergy.2009.02.011
You do not currently have access to this content.