An understanding of the high temperature mechanics experienced in thermal barrier coatings (TBC) during cycling conditions would be highly beneficial to extending the lifespan of the coatings. This study will present results obtained using synchrotron X-rays to measure depth resolved strains in the various layers of TBCs under thermal mechanical loading and a superposed thermal gradient. Tubular specimens, coated with yttria stabilized zirconia (YSZ) and an aluminum containing nickel alloy as a bond coat both through electron beam-physical vapor deposition (EB-PVD), were subjected to external heating and controlled internal cooling generating a thermal gradient across the specimen's wall. Temperatures at the external surface were in excess of 1000 °C. Throughout high temperature testing, 2D high-resolution XRD strain measurements are taken at various locations through the entire depth of the coating layers. Across the YSZ, a strain gradient was observed showing higher compressive strain at the interface to the bond coat than toward the surface. This behavior can be attributed to the specific microstructure of the EB-PVD-coating, which reveals higher porosity at the outer surface than at the interface to the bond coat, resulting in a lower in plane modulus near the surface. This location at the interface displays the most significant variation due to applied load at room temperature with this effect diminishing at elevated uniform temperatures. During thermal cycling with a thermal gradient and mechanical loading, the bond coat strain moves from a highly tensile state at room temperature to an initially compressive state at high temperature before relaxing to zero during the high temperature hold. The results of these experiments give insight into previously unseen material behavior at high temperature, which can be used to develop an increased understanding of various failure modes and their causes.

References

References
1.
Thornton
,
J.
,
Slater
,
S.
, and
Almer
,
J.
,
2005
, “
The Measurement of Residual Strains Within Thermal Barrier Coatings Using High-Energy X-Ray Diffraction
,”
J. Am. Ceram. Soc.
,
88
(
10
), pp.
2817
2825
.10.1111/j.1551-2916.2005.00331.x
2.
Maricocchi
,
A.
,
Bartz
,
A.
, and
Wortman
,
D.
,
1997
, “
PVD TBC Experience on GE Aircraft Engines
,”
J. Therm. Spray Technol.
,
6
(
2
), pp.
193
198
.10.1007/s11666-997-0012-x
3.
Hillery
,
R. V.
,
1996
, “
Coatings for High-Temperature Structural Materials: Trends and Opportunities
,” National Materials Advisory Board Report, National Academy Press, Washington, DC.
4.
Peichl
,
A.
,
Beck
,
T.
, and
Vöhringer
,
O.
,
2003
, “
Behaviour of an EB-PVD Thermal Barrier Coating System Under Thermal–Mechanical Fatigue Loading
,”
Surf. Coat. Technol.
,
162
(
2
), pp.
113
118
.10.1016/S0257-8972(02)00698-9
5.
Kennard Wright
,
P.
,
1998
, “
Influence of Cyclic Strain on Life of a PVD TBC
,”
Mater. Sci. Eng.: A
,
245
(
2
), pp.
191
200
.10.1016/S0921-5093(97)00850-2
6.
Tzimas
,
E.
,
Müllejans
,
H.
,
Peteves
,
S. D.
,
Bressers
,
J.
, and
Stamm
,
W.
,
2000
, “
Failure of Thermal Barrier Coating Systems Under Cyclic Thermomechanical Loading
,”
Acta Mater.
,
48
(
18
), pp.
4699
4707
.10.1016/S1359-6454(00)00260-3
7.
Drexler
,
J. M.
,
Aygun
,
A.
,
Li
,
D.
,
Vaßen
,
R.
,
Steinke
,
T.
, and
Padture
,
N. P.
,
2010
, “
Thermal-Gradient Testing of Thermal Barrier Coatings Under Simultaneous Attack by Molten Glassy Deposits and Its Mitigation
,”
Surf. Coat. Technol.
,
204
(
16
), pp.
2683
2688
.10.1016/j.surfcoat.2010.02.026
8.
Limarga
,
A.
,
Vaßen
,
R.
, and
Clarke
,
D. R.
,
2011
, “
Stress Distributions in Plasma-Sprayed Thermal Barrier Coatings Under Thermal Cycling in a Temperature Gradient
,”
ASME J. Appl. Mech.
,
78
(
1
), p.
011003
.10.1115/1.4002209
9.
Aleksanoglu
,
H.
,
Scholz
,
A.
,
Oechsner
,
M.
,
Berger
,
C.
,
Rudolphi
,
M.
,
Schütze
,
M.
, and
Stamm
,
W.
,
2011
, “
Determining a Critical Strain for APS Thermal Barrier Coatings Under Service Relevant Loading Conditions
,”
Int. J. Fatigue
,
53
, pp.
40
48
.10.1016/j.ijfatigue.2011.11.018
10.
Bartsch
,
M.
,
Marci
,
G.
,
Mull
,
K.
, and
Sick
,
C.
,
1999
, “
Fatigue Testing of Ceramic Thermal Barrier Coatings for Gas Turbine Blades
,”
Adv. Eng. Mater.
,
1
(
2
), pp.
127
129
.10.1002/(SICI)1527-2648(199910)1:2<127::AID-ADEM127>3.0.CO;2-6
11.
Maurel
,
V.
,
Koster
,
A.
, and
Rémy
,
L.
,
2010
, “
An Analysis of Thermal Gradient Impact in Thermal–Mechanical Fatigue Testing
,”
Fatigue Fract. Eng. Mater. Struct.
,
33
(
8
), pp.
473
489
.10.1111/j.1460-2695.2010.01449.x
12.
Diaz
,
R.
,
Jansz
,
M.
,
Mossaddad
,
M.
,
Raghavan
,
S.
,
Okasinski
,
J.
,
Almer
,
J.
,
Pelaez-Perez
,
H.
, and
Imbrie
,
P.
,
2012
, “
Role of Mechanical Loads in Inducing In-Cycle Tensile Stress in Thermally Grown Oxide
,”
Appl. Phys. Lett.
,
100
(11), p.
111906
.10.1063/1.3692592
13.
Almer
,
J. D.
, and
Stock
,
S. R.
,
2005
, “
Internal Strains and Stresses Measured in Cortical Bone Via High-Energy X-Ray Diffraction
,”
J. Struct. Biol.
,
152
(
1
), pp.
14
27
.10.1016/j.jsb.2005.08.003
14.
Siddiqui
,
S. F.
,
Knipe
,
K.
,
Manero
,
A.
,
Meid
,
C.
,
Wischek
,
J.
,
Okasinski
,
J.
,
Almer
,
J.
,
Karlsson
,
A. M.
,
Bartsch
,
M.
, and
Raghavan
,
S.
,
2013
, “
Synchrotron X-Ray Measurement Techniques for Thermal Barrier Coated Cylindrical Samples Under Thermal Gradients
,”
Rev. Sci. Instrum.
,
84
(
8
), p.
083904
.10.1063/1.4817543
15.
Hernandez
,
M. T.
,
Karlsson
,
A. M.
, and
Bartsch
,
M.
,
2009
, “
On TGO Creep and the Initiation of a Class of Fatigue Cracks in Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
203
(
23
), pp.
3549
3558
.10.1016/j.surfcoat.2009.05.018
16.
Knipe
,
K.
,
Manero
,
A.
,
Siddiqui
,
S. F.
,
Meid
,
C.
,
Wischek
,
J.
,
Okasinski
,
J.
,
Almer
,
J.
,
Karlsson
,
A.
,
Bartsch
,
M.
, and
Raghavan
,
S.
,
2014
, “
Strain Response of Thermal Barrier Coatings Captured Under Extreme Engine Environments Through Synchrotron X-Ray Diffraction
”,
Nat. Commun.
,
5
, p.
4559
.10.1038/ncomms5559
You do not currently have access to this content.