The atomization characteristics of blends of bioderived camelina hydrogenated renewable jet (HRJ) alternative fuel with conventional aviation kerosene (Jet A-1) discharging into ambient atmospheric air from a dual-orifice atomizer used in aircraft engines are described. The spray tests are conducted in a spray test facility at six different test flow conditions to compare the atomization of alternative fuels with that of Jet A-1. The fuel sprays are characterized in terms of fuel discharge, spray cone angle, drop size distribution, and spray patternation. The measurements of spray drop size distribution are obtained using laser diffraction based Spraytec equipment. The characteristics of fuel discharge and cone angle of alternative fuel sprays do not show any changes from that of Jet A-1 sprays. The characteristics of spray drop size, evaluated in terms of the variation of mean drop size along the spray axis, for the alternative fuel sprays remain unaffected by the variation in fuel properties between the alternative fuels and Jet A-1. The measurements on spray patternation, obtained using a mechanical patternator at a distance 5.1 cm from the atomizer exit, show an enhanced fuel concentration in the vicinity of spray axis region for the alternative fuel sprays discharging from the dual-orifice atomizer.

References

References
1.
Blakey
,
S.
,
Rye
,
L.
, and
Wilson
,
C. W.
,
2011
, “
Aviation Gas Turbine Alternative Fuels: A Review
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2863
2885
.10.1016/j.proci.2010.09.011
2.
Speight
,
J. G.
,
2006
,
Chemistry and Technology of Petroleum
,
4th ed.
,
CRC Press
,
New York
.
3.
Shonnard
,
D. R.
,
Williams
,
L.
, and
Kalnes
,
T. N.
,
2010
, “
Camelina-Derived Jet Fuel and Diesel: Sustainable Advanced Biofuels
,”
Environ. Prog. Sustainable Energy
,
29
(
3
), pp.
382
392
.10.1002/ep.10461
4.
Corporan
,
E.
,
Edwards
,
T.
,
Shafer
,
L.
,
DeWitt
,
M. J.
,
Klingshirn
,
C.
,
Zabarnick
,
S.
,
West
,
Z.
,
Striebich
,
R.
,
Graham
,
J.
, and
Klein
,
J.
,
2011
, “
Chemical, Thermal Stability, Seal Swell, and Emission Studies of Alternative Jet Fuels
,”
Energy Fuels
,
25
(
3
), pp.
955
966
.10.1021/ef101520v
5.
Timko
,
M. T.
,
Herndon
,
S. C.
,
Blanco
,
E.
,
Wood
,
E. C.
,
Yu
,
Z.
,
Miake-Lye
,
R. C.
,
Knighton
,
W. B.
,
Shafer
,
L.
,
Dewitt
,
M. J.
, and
Corporan
,
E.
,
2011
, “
Combustion Products of Petroleum Jet Fuel, a Fischer–Tropsch Synthetic Fuel, and a Biomass Fatty Acid Methyl Ester Fuel for a Gas Turbine Engine
,”
Combust. Sci. Technol.
,
183
(
10
), pp.
1039
1068
.10.1080/00102202.2011.581717
6.
Hui
,
X.
,
Kumar
,
K.
,
Sung
,
C.
,
Edwards
,
T.
, and
Gardner
,
D.
,
2012
, “
Experimental Studies on the Combustion Characteristics of Alternative Jet Fuels
,”
Fuel
,
98
, pp.
176
182
.10.1016/j.fuel.2012.03.040
7.
Outcalt
,
S. L.
, and
Fortin
,
T. J.
,
2012
, “
Density and Speed of Sound Measurements of Four Bioderived Aviation Fuels
,”
J. Chem. Eng. Data
,
57
(
10
), pp.
2869
2877
.10.1021/je3008149
8.
Liu
,
Y. C.
,
Savas
,
A. J.
, and
Avedisian
,
C. T.
,
2013
, “
The Spherically Symmetric Droplet Burning Characteristics of Jet-A and Biofuels Derived From Camelina and Tallow
,”
Fuel
,
108
, pp.
824
832
.10.1016/j.fuel.2013.02.025
9.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2013
,
Gas Turbine Combustion
,
3rd ed.
,
CRC Press
,
New York
.
10.
McVey
,
J. B.
,
Russel
,
S.
, and
Kennedy
,
J. B.
,
1987
, “
High-Resolution Patternator for the Characterization of Fuel Sprays
,”
J. Propul. Power
,
3
(
3
), pp.
202
209
.10.2514/3.22975
11.
Cohen
,
J. M.
, and
Rosfjord
,
T. J.
,
1991
, “
Spray Patternation at High Pressure
,”
J. Propul. Power
,
7
(
4
), pp.
481
487
.10.2514/3.23352
12.
Chen
,
S. K.
,
Lefebvre
,
A. H.
, and
Rollbuhler
,
J.
,
1993
, “
Factors Influencing the Circumferential Liquid Distribution From Pressure-Swirl Atomizers
,”
ASME J. Eng. Gas Turbines Power
,
115
(
3
), pp.
447
452
.10.1115/1.2906729
13.
Locke
,
R. J.
,
Hicks
,
Y. R.
,
Anderson
,
R. C.
, and
Zaller
,
M. M.
,
1998
, “
Optical Fuel Injector Patternation Measurements in Advanced Liquid-Fueled, High Pressure, Gas Turbine Combustors
,”
Combust. Sci. Technol.
,
138
(
1–6
), pp.
297
311
.10.1080/00102209808952073
14.
McLean
,
J. A.
,
Minnich
,
M. G.
, and
Montaser
,
A.
,
2000
, “
Optical Patternation: A Technique for Three-Dimensional Aerosol Diagnostics
,”
Anal. Chem.
,
72
(
20
), pp.
4796
4804
.10.1021/ac000239y
15.
Ullom
,
M. J.
, and
Sojka
,
P. E.
,
2001
, “
A Simple Optical Patternator for Evaluating Spray Symmetry
,”
Rev. Sci. Instrum.
,
72
(
5
), pp.
2472
2477
.10.1063/1.1353196
16.
Gadgil
,
H. P.
,
Dolatabadi
,
A.
, and
Raghunandan
,
B. N.
,
2011
, “
Mass Distribution Studies in Effervescent Sprays
,”
Atomization Sprays
,
21
(
5
), pp.
375
390
.10.1615/AtomizSpr.2011003661
17.
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2014
, “
Effect of Fuel Properties on Spray Characteristics of Alternative Jet Fuels Using Global Sizing Velocimetry
,”
Atomization Sprays
,
24
(
7
), pp.
575
597
.10.1615/AtomizSpr.2014008620
18.
Triballier
,
K.
,
Dumouchel
,
C.
, and
Cousin
,
J.
,
2003
, “
A Technical Study on the Spraytec Performances: Influence of Multiple Light Scattering and Multi-Modal Drop-Size Distribution Measurements
,”
Exp. Fluids
,
35
(
4
), pp.
347
356
.10.1007/s00348-003-0674-1
19.
De Corso
,
S. M.
, and
Kemeny
,
G. A.
,
1957
, “
Effect of Ambient and Fuel Pressure on Nozzle Spray Angle
,”
Trans. ASME
,
79
(
3
), pp.
607
615
.
20.
Lefebvre
,
A. H.
,
1989
,
Atomization and Sprays
,
Hemisphere
,
New York
.
21.
Saha
,
A.
,
Lee
,
J. D.
,
Basu
,
S.
, and
Kumar
,
R.
,
2012
, “
Breakup and Coalescence Characteristics of a Hollow Cone Swirling Spray
,”
Phys. Fluids
,
24
(
12
), p.
124103
.10.1063/1.4773065
22.
Guildenbecher
,
D. R.
,
López-Rivera
,
C.
, and
Sojka
,
P. E.
,
2009
, “
Secondary Atomization
,”
Exp. Fluids
,
46
(
3
), pp.
371
402
.10.1007/s00348-008-0593-2
23.
Lorenzetto
,
G. E.
, and
Lefebvre
,
A. H.
,
1977
, “
Measurements of Drop Size on a Plain-Jet Airblast Atomizer
,”
AIAA J.
,
15
(
7
), pp.
1006
1010
.10.2514/3.60742
You do not currently have access to this content.