Numerical investigation of the optimization of the stall control efficiency for a high speed centrifugal compressor using air injection is presented. External air was injected close to the diffuser entrance at the shroud surface of the vaneless region. Injection was applied with mass flow rates of 0.7%, 1%, and 1.5% of the design inlet mass flow rate with six different angles of 0 deg, 10 deg, 20 deg, 30 deg, 40 deg, and 180 deg measured from the positive tangential direction at the vaneless region. Detailed comparisons were made between the case without using air injection and the different air injection cases by comparing velocity, pressure, and force fluctuations with time. Results showed that as the injection mass flow rate increases, the number of diffuser passages with reversed flow decreases for all cases of injection except for the case of reverse tangent injection. Results indicated that using angle of injection of 30 deg minimized the stall area and provided the least force fluctuations with no reversed flow compared to other injection angles. Finally, it was found that injecting air with mass flow rate of 1.5% of the inlet mass flow rate at an angle of 30 deg resulted in shifting of stall onset to a mass flow rate corresponding to 3.8 kg/s instead of 4 kg/s for a compressor without using air injection control.

References

References
1.
Ciorciari
,
R.
,
Lesser
,
A.
,
Blaim
,
F.
, and
Niehuis
,
R.
,
2012
, “
Numerical Investigation of Tip Clearance Effects in an Axial Transonic Compressor
,”
J. Therm. Sci.
,
21
(
2
), pp.
109
119
.10.1007/s11630-012-0525-6
2.
Geng
,
S.
,
Lin
,
F.
,
Chen
,
J.
, and
Nie
,
C.
,
2011
, “
Evolution of Unsteady Flow Near Rotor Tip During Stall Inception
,”
J. Therm. Sci.
,
20
(
4
), pp.
294
303
.10.1007/s11630-011-0473-6
3.
Schleer
,
M.
, and
Abhari
,
R. S.
,
2008
, “
Clearance Effects on the Evolution of the Flow in the Vaneless Diffuser of a Centrifugal Compressor at Part Load Condition
,”
ASME J. Turbomach.
,
130
(
3
), p.
031009
.10.1115/1.2776955
4.
Tan
,
C.
,
Day
,
I.
,
Morris
,
S.
, and
Wadia
,
A.
,
2010
, “
Spike-Type Compressor Stall Inception, Detection, and Control
,”
Annu. Rev. Fluid Mech.
,
42
(1), pp.
275
300
.10.1146/annurev-fluid-121108-145603
5.
Zhang
,
Y.
,
Lu
,
X.
,
Chu
,
W.
, and
Zhu
,
J.
,
2010
, “
Numerical Investigation of the Unsteady Tip Leakage Flow and Rotating Stall Inception in a Transonic Compressor
,”
J. Therm. Sci.
,
19
(
4
), pp.
310
317
.10.1007/s11630-010-0388-7
6.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
.10.1115/1.2750674
7.
Ramakrishna
,
P.
, and
Govardhan
,
M.
,
2009
, “
Stall Characteristics and Tip Clearance Effects in Forward Swept Axial Compressor Rotors
,”
J. Therm. Sci.
,
18
(
1
), pp.
40
47
.10.1007/s11630-009-0040-6
8.
Hembera
,
M.
,
Kau
,
H.-P.
, and
Johann
,
E.
,
2008
, “
Simulation of Casing Treatments of a Transonic Compressor Stage
,”
Int. J. Rotating Mach.
,
2008
(
1
), p.
657202
.10.1155/2008/657202
9.
Park
,
C.-Y.
,
Choi
,
Y.-S.
,
Lee
,
K.-Y.
, and
Yoon
,
J.-Y.
,
2012
, “
Numerical Study on the Range Enhancement of a Centrifugal Compressor With a Ring Groove System
,”
J. Mech. Sci. Technol.
,
26
(
5
), pp.
1371
1378
.10.1007/s12206-012-0320-z
10.
Xu
,
W.
,
Wang
,
T.
,
Gu
,
C.
, and
Ding
,
L.
,
2012
, “
Numerical Investigation of a Centrifugal Compressor With Holed Casing Treatment
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
044502
.10.1115/1.4004444
11.
Houghton
,
T.
, and
Day
,
I.
,
2012
, “
Stability Enhancement by Casing Grooves: The Importance of Stall Inception Mechanism and Solidity
,”
ASME J. Turbomach.
,
134
(
2
), p.
021003
.10.1115/1.4002986
12.
Xu
,
W.
,
Wang
,
T.
, and
Gu
,
C.
,
2011
, “
Performance of a Centrifugal Compressor With Holed Casing Treatment in the Large Flowrate Condition
,”
Sci. China Technol. Sci.
,
54
(
9
), pp.
2483
2492
.10.1007/s11431-011-4416-y
13.
Lu
,
X.
,
Chu
,
W.
,
Zhu
,
J.
, and
Zhang
,
Y.
,
2009
, “
Numerical Investigations of the Coupled Flow Through a Subsonic Compressor Rotor and Axial Skewed Slot
,”
ASME J. Turbomach.
,
131
(
1
), p.
011001
.10.1115/1.2948959
14.
Lu
,
X.
,
Chu
,
W.
,
Zhu
,
J.
, and
Tong
,
Z.
,
2006
, “
Numerical and Experimental Investigations of Steady Micro-Tip Injection on a Subsonic Axial-Flow Compressor Rotor
,”
Int. J. Rotating Mach.
,
2006
(
1
), p.
71034
.10.1155/IJRM/2006/71034
15.
Khaleghi
,
H.
,
Boroomand
,
M.
,
Teixeira
,
J.
, and
Tousi
,
A.
,
2008
, “
A Numerical Study of the Effects of Injection Velocity on Stability Improvement in High-Speed Compressors
,”
Proc. Inst. Mech. Eng., Part A
,
222
(
2
), pp.
189
198
.10.1243/09576509JPE443
16.
Benhegouga
,
I.
, and
Ce
,
Y.
,
2013
, “
Steady Air Injection Flow Control Parameters in a Transonic Axial Compressor
,” Res. J. Appl. Sci.,
5
(4), pp.
1441
1448
. Available at: http://maxwellsci.com/jp/abstract.php?jid=RJASET&no=261&abs=52
17.
Hiller
,
S.-J.
,
Matzgeller
,
R.
, and
Horn
,
W.
,
2011
, “
Stability Enhancement of a Multistage Compressor by Air Injection
,”
ASME J. Turbomach.
,
133
(
3
), p.
031009
.10.1115/1.4001228
18.
Skoch
,
G. J.
, 2003, “
Experimental Investigation of Centrifugal Compressor Stabilization Techniques
,”
ASME
Paper No. GT2003-38524.10.1115/GT2003-38524
19.
Chen
,
J.-P.
,
Webster
,
R. S.
,
Hathaway
,
M. D.
,
Herrick
,
G. P.
, and
Skoch
,
G. J.
,
2009
, “
High Performance Computing of Compressor Rotating Stall and Stall Control
,”
Integr. Comput.-Aided Eng.
,
16
(
1
), pp.
75
89
.10.3233/ICA-2009-0305
20.
Nie
,
C.
,
Tong
,
Z.
,
Geng
,
S.
,
Zhu
,
J.
, and
Huang
,
W.
,
2007
, “
Experimental Investigations of Micro Air Injection to Control Rotating Stall
,”
J. Therm. Sci.
,
16
(
1
), pp.
1
6
.10.1007/s11630-007-0001-x
21.
Halawa
,
T.
,
Gadala
,
M.
,
Alqaradawi
,
M.
, and
Badr
,
O.
,
2014
, “
Numerical Investigation of Steady Air Injection Flow to Control Rotating Stall in Centrifugal Compressors
,”
ASME
Paper No. ESDA2014-20590.10.1115/ESDA2014-20590
22.
Skoch
,
G. J.
,
Prahst
,
P.
,
Wernet
,
M.
,
Wood
,
J.
, and
Strazisar
,
A.
,
1997
, “
Laser Anemometer Measurements of the Flow Field in a 4:1 Pressure Ratio Centrifugal Impeller
,” NASA Lewis Research Center, Cleveland, OH, Report No. NASA-E-10864.
23.
Spakovsky
,
Z.
, 2002, “
Backward Traveling Rotating Stall Waves in Centrifugal Compressors
,”
ASME
Paper No. GT2002-30379.10.1115/GT2002-30379
24.
Tarr
,
D. L.
,
2008
, “
Scaling of Impeller Response to Impeller–Diffuser Interactions in Centrifugal Compressors
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
25.
Wernet
,
M. P.
,
Bright
,
M. M.
, and
Skoch
,
G. J.
,
2001
, “
An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV
,”
ASME J. Turbomach.
,
123
(
2
), pp.
418
428
.10.1115/1.1343465
26.
Skoch
,
G. J.
, “
Experimental Investigation of Diffuser Hub Injection to Improve Centrifugal Compressor Stability
,”
ASME
Paper No. GT2004-53618.10.1115/GT2004-53618
27.
McKain
,
T. F.
, and
Holbrook
,
G. J.
,
1997
, “
Coordinates for a High Performance 4:1 Pressure Ratio Centrifugal Compressor
,” National Aeronautics and Space Administration, Washington, DC.
28.
ANSYS, 2011, FLUENT 13.0, ANSYS, Inc., Canonsburg, PA.
29.
ANSYS, 2011, “ANSYS FLUENT Theory Guide,” ANSYS, Inc., Canonsburg, PA.
30.
Richardson
,
L. F.
,
1911
, “
The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, With an Application to the Stresses in a Masonry Dam
,”
Philos. Trans. R. Soc. London, Ser. A
,
210
(459–470), pp.
307
357
.10.1098/rsta.1911.0009
31.
Larosiliere
,
L.
, and
Skoch
,
G. J.
,
1999
, “
Aerodynamic Synthesis of a Centrifugal Impeller Using Computational Fluid Dynamics and Measurements
,”
J. Propul. Power
,
15
(5), pp. 623–632.10.2514/2.5486
32.
Halawa
,
T.
,
Gadala
,
M.
,
Alqaradawi
,
M.
, and
Badr
,
O.
,
2014
, “
Numerical Simulation of Stall Development Into Surge and Stall Control Using Air Injection in Centrifugal Compressors
,”
ASME
Paper No. POWER2014-32053.10.1115/POWER2014-32053
33.
Halawa
,
T.
,
Gadala
,
M.
,
Alqaradawi
,
M.
, and
Badr
,
O.
,
2014
, “
Numerical Simulation and Control of Rotating Stall in a Transonic Centrifugal Compressor
,”
ASME
Paper No. ESDA2014-20589.10.1115/ESDA2014-20589
You do not currently have access to this content.