The magnetically suspended rotor (MSR) in a double-gimbal magnetically suspended control moment gyro (DGMSCMG) is a complicated system with multivariable, nonlinearity, and strong coupling. Not only the torsional motion of the MSR is coupled depend on the rotating speed but also its translational and torsional motions at the same axis are coupled due to the asymmetric position stiffness of magnetic bearings. Besides, the MSR also encounters the nonlinear coupling torque due to gimbals' movements. These problems influence the control accuracy of the MSR. To resolve these issues, this work presents a high-precision control strategy. A compensation method for asymmetric position stiffness is proposed to realize separation between the translational and torsional motions. Then the integral sliding mode control based on motion separation (MSISMC) is employed to stabilize the translational and torsional dynamics. To suppress the coupling torque from gimbals' movements, a novel switching function considering the estimation of the coupling torque is designed in torsional controller, and the decoupling control for the torsional motion is implemented by pole assignments. The stability of the closed-loop MSR control system is analyzed by the Lyapunov and state space methods. Comparative simulations and experiments verify the effectiveness and superiority of the proposed control strategy.

References

References
1.
Jacot
,
A. D.
, and
Liska
,
D. J.
,
1966
, “
Control Moment Gyros in Attitude Control
,”
J. Spacecr. Rockets
,
3
(
9
), pp.
1313
1320
.10.2514/3.28653
2.
Fan
,
J. X.
, and
Zhou
,
D.
,
2012
, “
Nonlinear Attitude Control of Flexible Spacecraft With Scissored Pairs of Control Moment Gyros
,”
ASME J. Dyn. Syst., Meas., Control
,
134
(
5
), pp.
343
351
.10.1115/1.4006368
3.
Kasai
,
S.
,
Kojima
,
H.
, and
Satoh
,
M.
,
2013
, “
Spacecraft Attitude Maneuver Using Two Single-Gimbal Control Moment Gyros
,”
Acta Astronaut.
,
84
, pp.
88
98
.10.1016/j.actaastro.2012.07.035
4.
Abbas
,
H. S.
,
Ali
,
A.
,
Hashemi
,
S. M.
, and
Werner
,
H.
,
2014
, “
LPV State-Feedback Control of a Control Moment Gyroscope
,”
Control Eng. Pract.
,
24
, pp.
129
137
.10.1016/j.conengprac.2013.05.008
5.
Schweitzer
,
G.
, and
Maslen
,
E. H.
,
2009
, “
Magnetic Bearing—Theory Design and Application to Rotating Machinery
,
Springer-Verlag
,
Berlin
.
6.
Park
,
J.
, and
Palazzolo
,
A.
,
2010
, “
Magnetically Suspended VSCMGs for Simultaneous Attitude Control and Power Transfer IPAC Service
,”
ASME J. Dyn. Syst. Meas. Control.
,
132
(
5
), p.
051001
.10.1115/1.4002105
7.
Fang
,
J. C.
, and
Ren
,
Y.
,
2013
, “
High-Stability and Fast-Response Twisting Motion Control for the Magnetically Suspended Rotor System in a Control Moment Gyro
,”
IEEE ASME Trans. Mechatronics
,
18
(
5
), pp.
1625
1634
.10.1109/TMECH.2011.2161877
8.
Zheng
,
S. Q.
,
Han
,
B. C.
, and
Guo
,
L.
,
2014
, “
Composite Hierarchical Anti-Disturbance Control for Magnetic Bearing System Subject to Harmonic Drive Resonance and Gyroscopic Torque
,”
IEEE Trans. Ind. Electron.
,
61
(
12
), pp.
7004
7012
.10.1109/TIE.2014.2316226
9.
Liu
,
Z. R.
,
Fang
,
J. C.
,
Han
,
B. C.
, and
Yu
,
L. H.
,
2008
, “
Power Reduction for the Permanent Magnet Biased Magnetic Bearing in MSCMG
,”
J. Astronaut.
,
29
(
3
), pp.
1036
1041
.10.3873/j.issn.1000-1328.2008.03.057
10.
Hoque
,
M. E.
,
Mizuno
,
T.
,
Kishita
,
D.
,
Takasaki
,
M.
, and
Ishino
,
Y.
,
2010
, “
Development of an Active Vibration Isolation System Using Linearized Zero-Power Control With Weight Support Springs
,”
ASME J. Vib. Acoust.
,
132
(
4
), p.
041006
.10.1115/1.4000968
11.
Hong
,
S. K.
, and
Langari
,
R.
,
2008
, “
Robust Fuzzy Control of a Magnetic Bearing System Subject to Harmonic Disturbances
,”
IEEE Trans. Control Syst. Technol.
,
8
(
2
), pp.
366
371
.10.1109/87.826808
12.
Lei
,
S.
, and
Palazzolo
,
A.
,
2008
, “
Control of Flexible Rotor Systems With Active Magnetic Bearings
,”
J. Sound Vib.
,
314
(
1–2
), pp.
19
38
.10.1016/j.jsv.2007.12.028
13.
Ahrens
,
M.
,
Kucera
,
L.
, and
Larsonneur
,
R.
,
1996
, “
Performance of a Magnetically Suspended Flywheel Energy Storage Device
,”
IEEE Trans. Control Syst. Technol.
,
4
(
5
), pp.
494
502
.10.1109/87.531916
14.
Fan
,
Y. H.
, and
Fang
,
J. C.
,
2004
, “
Experimental Research on the Nutational Stability of Magnetically Suspended Momentum Flywheel in Control Moment Gyroscope (CMG)
,”
9th International Symposium on Magnetic Bearings
,
Lexington, KY
, Aug. 3–6, pp.
116
121
.
15.
Brown
,
G. V.
,
Kascak
,
A.
,
Jansen
,
R. H.
,
Dever
,
T. P.
, and
Duffy
,
K. P.
,
2005
, “
Stabilizing Gyroscopic Modes in Magnetic-Bearing-Supported Flywheels by Using Cross-Axis Proportional Gains
,”
AIAA
Paper No. 2005-5955. 10.2514/6.2005-5955
16.
Dever
,
T. P.
,
Brown
,
G. V.
,
Duffy
,
K. P.
, and
Jansen
,
R. H.
,
2004
, “
Modeling and Development of a Magnetic Bearing Controller for a High Speed Flywheel System
,”
AIAA
Paper No. 2004-5626. 10.2514/6.2004-5626
17.
Wei
,
T.
, and
Fang
,
J. C.
,
2005
, “
Moving-Gimbal Effect and Angular Rate Feedforward Control in Magnetically Suspended Rotor System of CMG
,”
J. Astronaut.
,
26
(
1
), pp.
19
23
(in Chinese). 10.3321/j.issn:1000-1328.2005.01.004
18.
Tamisier
,
V.
,
2006
, “
Optimal Control of the Gyroscopic Effects
,”
IEEE International Symposium on Industrial Electronics
,
Montreal, July 9–13
, pp.
2556
2561
.10.1109/ISIE.2006.295974
19.
Flowers
,
G. T.
,
Szász
,
G.
,
Trent
, V
. S.
, and
Greene
,
M. E.
,
1997
, “
A Study of Integrally Augmented State Feedback Control for an Active Magnetic Bearing Supported Rotor System
,”
ASME J. Gas Turbines Power
,
123
(
2
), pp.
377
382
.10.1115/1.1360686
20.
Schuhmann
,
T.
,
Hofmann
,
W.
, and
Werner
,
R.
,
2012
, “
Improving Operational Performance of Active Magnetic Bearings Using Kalman Filter and State Feedback Control
,”
IEEE Trans. Ind. Electron.
,
59
(
2
), pp.
821
829
.10.1109/TIE.2011.2161056
21.
Defoy
,
B.
,
Alban
,
T.
, and
Mahfoud
,
J.
,
2014
, “
Experimental Assessment of a New Fuzzy Controller Applied to a Flexible Rotor Supported by Active Magnetic Bearings
,”
ASME J. Vib. Acoust.
,
136
(
5
), p.
051006
.10.1115/1.4027959
22.
Lindlau
,
J. D.
, and
Knospe
,
C. R.
,
2002
, “
Feedback Linearization of an Active Magnetic Bearing With Voltage Control
,”
IEEE Trans. Control Syst. Technol.
,
10
(
1
), pp.
21
31
.10.1109/87.974335
23.
Chen
,
M.
, and
Knospe
,
C. R.
,
2005
, “
Feedback Linearization of Active Magnetic Bearings: Current-Mode Implementation
,”
IEEE ASME Trans. Mechatronics
,
10
(
6
), pp.
632
639
.10.1109/TMECH.2005.859824
24.
Lin
,
F. J.
,
Chen
,
S. Y.
, and
Huang
,
M. S.
,
2010
, “
Tracking Control of Thrust Active Magnetic Bearing System Via Hermite Polynomial-Based Recurrent Neural Network
,”
IET Electr. Power Appl.
,
4
(
9
), pp.
701
714
.10.1049/iet-epa.2010.0068
25.
Fang
,
J. C.
, and
Ren
,
Y.
,
2010
, “
High-Precision Control for a Single-Gimbal Magnetically Suspended Control Moment Gyro Based on Inverse System Method
,”
IEEE Trans. Ind. Electron.
,
58
(
9
), pp.
4331
4342
.10.1109/TIE.2010.2095394
26.
Balini
,
H. M. N. K.
,
Scherer
,
C. W.
, and
Witte
,
J.
,
2011
, “
Performance Enhancement for AMB Systems Using Unstable H∞ Controllers
,”
IEEE Trans. Control Syst. Technol.
,
19
(
6
), pp.
1479
1492
.10.1109/TCST.2010.2097264
27.
Fittro
,
R. L.
, and
Knospe
,
C. R.
,
2002
, “
The μ Approach to Control of Active Magnetic Bearings
,”
ASME J. Gas Turbines Power
,
124
(
3
), pp.
566
570
.10.1115/1.1417484
28.
Madden
,
R. J.
, and
Sawicki
,
J. T.
,
2012
, “
Rotor Model Validation for an Active Magnetic Bearing Machining Spindle Using Mu-Synthesis Approach
,”
ASME J. Gas Turbines Power
,
134
(
9
), p.
092501
.10.1115/1.4006988
29.
Dong
,
L. L.
, and
You
,
S. L.
,
2014
, “
Adaptive Control of an Active Magnetic Bearing With External Disturbance
,”
ISA Trans.
,
53
(5), pp.
1410
1419
. 10.1016/j.isatra.2013.12.028
30.
Chen
,
S. L.
, and
Weng
,
C. C.
,
2010
, “
Robust Control of a Voltage-Controlled Three-Pole Active Magnetic Bearing System
,”
IEEE ASME Trans. Mechatronics
,
15
(
3
), pp.
381
388
.10.1109/TMECH.2009.2027015
31.
Lin
,
F. J.
,
Chen
,
S. Y.
, and
Huang
,
M. S.
,
2011
, “
Intelligent Double Integral Sliding-Mode Control for Five-Degree-of-Freedom Active Magnetic Bearing System
,”
IET Control Theory Appl.
,
5
(
11
), pp.
1287
1303
.10.1049/iet-cta.2010.0237
32.
Zheng
,
S. Q.
, and
Han
,
B. C.
,
2013
, “
Investigations of an Integrated Angular Velocity Measurement and Attitude Control System for Spacecraft Using Magnetically Suspended Double-Gimbal CMGs
,”
Adv. Space Res.
,
51
(
12
), pp.
2216
2228
.10.1016/j.asr.2013.01.015
33.
Chen
,
W. H.
,
Ballance
,
D. J.
,
Gawthrop
,
P. J.
, and
O'Reilly
,
J.
,
2000
, “
A Nonlinear Disturbance Observer for Robotic Manipulators
,”
IEEE Trans. Ind. Electron.
,
47
(
4
), pp.
932
938
.10.1109/41.857974
34.
Wu
,
J.
,
Huang
,
J.
,
Wang
,
Y. J.
, and
Xing
,
K. X.
,
2014
, “
Nonlinear Disturbance Observer-Based Dynamic Surface Control for Trajectory Tracking of Pneumatic Muscle System
,”
IEEE Trans. Control Syst. Technol.
,
22
(
2
), pp.
440
455
.10.1109/TCST.2013.2262074
You do not currently have access to this content.