When a component, as heat shields, degrade, two stages can be distinguished. First, a potential failure appears, which could evolve to the second stage and become a functional failure. The time between these two stages is called delay-time, which has been widely studied in literature to determine when to inspect to avoid breakdown. These studies have shown only single analysis criteria to find failure finding interval (FFI). In order to overcome this limitation, we developed a novel strategy to apply multicriteria methodology to optimize FFI. Our approach considers availability, system breakdown risk and reliability analysis from a systemic perspective, studying heat shields as groups, according to their location in the combustion chamber, regardless of age defect. Hence, it is not necessary to check every one of the shields. Our results show an optimal FFI policy subject to a determined breakdown risk level. This analysis may be adaptable to other components that can be grouped together.

References

References
1.
van Oosterom
,
C. D.
,
Elwany
,
A. H.
,
Çelebi
,
D.
, and
van Houtum
,
G. J.
,
2014
, “
Optimal Policies for a Delay Time Model With Postponed Replacement
,”
Euro. J. Oper. Res.
,
232
(
1
), pp.
186
197
.10.1016/j.ejor.2013.06.038
2.
Christer
,
A. H.
,
Lee
,
C.
, and
Wang
,
W.
,
2000
, “
A Data Deficiency Based Parameter Estimating Problem and Case Study in Delay Time PM Modeling
,”
Int. J. Prod. Econ.
,
67
(
1
), pp.
63
76
.10.1016/S0925-5273(00)00010-4
3.
Pillay
,
A.
, and
Wang
,
J.
,
2001
, “
A Maintenance Study of Fishing Vessel Equipment Using Delay-Time Analysis
,”
J. Qual. Maint. Eng.
,
7
(
2
), pp.
118
127
.10.1108/13552510110397421
4.
Aven
,
T.
, and
Castro
,
I. T.
,
2009
, “
A Delay-Time Model With Safety Constraint
,”
Reliab. Eng. Syst. Saf.
,
94
(
2
), pp.
261
267
.10.1016/j.ress.2008.03.004
5.
Wang
,
W.
,
2012
, “
An Overview of the Recent Advances in Delay-Time-Based Maintenance Modelling
,”
Reliab. Eng. Syst. Saf.
,
106
, pp.
165
178
.10.1016/j.ress.2012.04.004
6.
Tang
,
T.
,
Lin
,
D.
,
Banjevic
,
D.
, and
Jardine
,
A. K.
,
2013
, “
Availability of a System Subject to Hidden Failure Inspected at Constant Intervals With Non-negligible Downtime Due to Inspection and Downtime Due to Repair/Replacement
,”
J. Stat. Plann. Inference
,
143
(
1
), pp.
176
185
.10.1016/j.jspi.2012.05.011
7.
Pascual
,
R.
,
Louit
,
D. M.
, and
Jardine
,
A. K. S.
,
2011
, “
Optimal Inspection Intervals for Safety Systems With Partial Inspections
,”
JORS
,
62
(
12
), pp.
2051
2062
.10.1057/jors.2010.173
8.
Lee
,
C.
,
1999
, “
Applications of Delay Time Theory to Maintenance Practice of Complex Plant
,” Ph.D. thesis, University of Salford, Salford, UK.
9.
Jardine
,
A.
, and
Tsang
,
A.
,
2005
,
Maintenance, Replacement, and Reliability: Theory and Applications
,
Dekker Mechanical Engineering, Taylor & Francis
, pp.
49
97
.
10.
Ten Wolde
,
M.
, and
Ghobbar
,
A. A.
,
2013
, “
Optimizing Inspection Intervals—Reliability and Availability in Terms of a Cost Model: A Case Study on Railway Carriers
,”
Reliab. Eng. Syst. Saf.
,
114
, pp.
137
147
.10.1016/j.ress.2012.12.013
11.
Wang
,
W.
,
2011
, “
An Inspection Model Based on a Three-Stage Failure Process
,”
Reliab. Eng. Syst. Saf.
,
96
(
7
), pp.
838
848
.10.1016/j.ress.2011.03.003
12.
Christer
,
A.
,
1999
, “
Developments in Delay Time Analysis for Modelling Plant Maintenance
,”
J. Oper. Res. Soc.
,
50
(
11
), pp.
1120
1137
.10.1057/palgrave.jors.2600837
13.
Wang
,
W.
, and
Christer
,
A. H.
,
2003
, “
Solution Algorithms for a Nonhomogeneous Multi-Component Inspection Model
,”
Comput. Oper. Res.
,
30
(
1
), pp.
19
34
.10.1016/S0305-0548(01)00074-0
14.
Pandey
,
M. D.
,
Lu
,
D.
, and
Komljenovic
,
D.
,
2011
, “
The Impact of Probabilistic Modeling in Life-Cycle Management of Nuclear Piping Systems
,”
ASME J. Eng. Gas Turbines Power
,
133
(
1
), p.
012901
.10.1115/1.4000897
15.
Yuan
,
X.-X.
,
Mao
,
D.
, and
Pandey
,
M. D.
,
2009
, “
A Bayesian Approach to Modeling and Predicting Pitting Flaws in Steam Generator Tubes
,”
Reliab. Eng. Syst. Saf.
,
94
(
11
), pp.
1838
1847
.10.1016/j.ress.2009.06.001
16.
Christer
,
A. H.
, and
Lee
,
C.
,
2000
, “
Refining the Delay-Time-Based PM Inspection Model With Non-negligible System Downtime Estimates of the Expected Number of Failures
,”
Int. J. Prod. Econ.
,
67
(
1
), pp.
77
85
.10.1016/S0925-5273(00)00011-6
17.
Wang
,
W.
,
2011
, “
A Joint Spare Part and Maintenance Inspection Optimisation Model Using the Delay-Time Concept
,”
Reliab. Eng. Syst. Saf.
,
96
(
11
), pp.
1535
1541
.10.1016/j.ress.2011.07.004
18.
Wang
,
W.
, and
Christer
,
A. H.
,
2003
, “
Solution Algorithms for a Nonhomogeneous Multi-Component Inspection Model
,”
Comput. Oper. Res.
,
30
(
1
), pp.
19
34
.10.1016/S0305-0548(01)00074-0
19.
Wang
,
W.
,
Banjevic
,
D.
, and
Pecht
,
M. G.
,
2010
, “
A Multi-Component and Multi-Failure Mode Inspection Model Based on the Delay Time Concept
,”
Reliab. Eng. Syst. Saf.
,
95
(
8
), pp.
912
920
.10.1016/j.ress.2010.04.004
20.
Blumenthal
,
S.
,
Greenwood
,
J. A.
, and
Herbach
,
L. H.
,
1984
. “
Series Systems and Reliability Demonstration Tests
,”
Oper. Res.
,
32
(
3
), pp.
641
648
.10.1287/opre.32.3.641
21.
Smeitink
,
E.
, and
Dekker
,
R.
,
1990
, “
A Simple Approximation to the Renewal Function [Reliability Theory]
,”
Reliab. IEEE Trans.
,
39
(
1
), pp.
71
75
.10.1109/24.52614
22.
Todinov
,
M.
,
2006
,
Risk-Based Reliability Analysis and Generic Principles for Risk Reduction
,
Elsevier Science & Technology Books
, Amsterdam, pp.
68
72
.
You do not currently have access to this content.