In this paper, we conduct an experimental investigation to study the link between the flame macroscale structure—or flame brush spatial distribution—and thermo-acoustic instabilities, in a premixed swirl-stabilized dump combustor. We operate the combustor with premixed methane–air in the range of equivalence ratio (φ) from the lean blowout limit to φ=0.75. First, we observe the different dynamic modes in this lean range as φ is raised. We also document the effect of φ on the flame macrostructure. Next, we examine the correspondence between dynamic mode transitions and changes in flame macrostructure. To do so, we modify the combustor length—by downstream truncation—without changing the underlying flow upstream. Thus, the resonant frequencies of the geometry are altered allowing for decoupling the heat release rate fluctuations and the acoustic feedback. Mean flame configurations in the modified combustor and for the same range of equivalence ratio are examined, following the same experimental protocol. It is found that not only the same sequence of flame macrostructures is observed in both combustors but also that the transitions occur at a similar set of equivalence ratio. In particular, the appearance of the flame in the outside recirculation zone (ORZ) in the long combustor—which occurs simultaneously with the onset of instability at the fundamental frequency—happens at similar φ when compared to the short combustor, but without being in latter case accompanied by a transition to thermo-acoustic instability. Then, we interrogate the flow field by analyzing the streamlines, mean, and rms velocities for the nonreacting flow and the different flame types. Finally, we focus on the transition of the flame to the ORZ in the acoustically decoupled case. Our analysis of this transition shows that it occurs gradually with an intermittent appearance of a flame in the ORZ and an increasing probability with φ. The spectral analysis of this phenomenon—we refer to as “ORZ flame flickering”—shows the presence of unsteady events occurring at two distinct low frequency ranges. A broad band at very low frequency in the range ∼(1 Hz–10 Hz) associated with the expansion and contraction of the inner recirculation zone (IRZ) and a narrow band centered around 28 Hz which is the frequency of rotation of the flame as it is advected by the ORZ flow.

References

1.
Durox
,
D.
,
Moeck
,
J. P.
,
Bourgouin
,
J.-F.
,
Morenton
,
P.
,
Viallon
,
M.
,
Schuller
,
T.
, and
Candel
,
S.
,
2013
, “
Flame Dynamics of a Variable Swirl Number System and Instability Control
,”
Combust. Flame
,
160
(
9
), pp.
1729
1742
.10.1016/j.combustflame.2013.03.004
2.
Richards
,
G.
,
McMillian
,
M.
,
Gemmen
,
R.
,
Rogers
,
W.
, and
Cully
,
S.
,
2001
, “
Issues for Low-Emission, Fuel-Flexible Power Systems
,”
Progress Energy Combust. Sci.
,
27
(
2
), pp.
141
169
.10.1016/S0360-1285(00)00019-8
3.
Janus
,
M.
,
Richards
,
G.
,
Yip
,
M.
, and
Robey
,
E.
,
1997
, “
Effects of Ambient Conditions and Fuel Composition on Combustion Stability
,” U.S. Department of Energy, Federal Energy Technology Center, Morgantown, WV, Technical Report No. DOE/FETC/C-97/7283.
4.
Lieuwen
,
T.
,
McDonell
,
V.
,
Petersen
,
E.
, and
Santavicca
,
D.
,
2008
, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011206
.10.1115/1.2771243
5.
Lieuwen
,
T. C.
,
Yetter
,
R.
, and
Yang
,
V.
,
2009
,
Synthesis Gas Combustion Fundamentals and Applications
,
CRC Press
, Boca Raton, FL.10.1201/9781420085358
6.
Ferguson
,
D.
,
Straub
,
D.
,
Richards
,
G.
, and
Robey
,
E.
,
2007
, “
Impact of Fuel Variability on Dynamic Instabilities in Gas Turbine Combustion
,” Fifth U.S. Combustion Meeting, San Diego, CA, Mar. 25–28.
7.
Kim
,
K. T.
,
Lee
,
J. G.
,
Lee
,
H. J.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2010
, “
Characterization of Forced Flame Response of Swirl-Stabilized Turbulent Lean-Premixed Flames in a Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
041502
.10.1115/1.3204532
8.
Fritsche
,
D.
,
Füri
,
M.
, and
Boulouchos
,
K.
,
2007
, “
An Experimental Investigation of Thermoacoustic Instabilities in a Premixed Swirl-Stabilized Flame
,”
Combust. Flame
,
151
(
1
), pp.
29
36
.10.1016/j.combustflame.2007.05.012
9.
Candel
,
S.
,
2002
, “
Combustion Dynamics and Control: Progress and Challenges
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
1
28
.10.1016/S1540-7489(02)80007-4
10.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Progress Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.10.1016/j.pecs.2009.01.002
11.
Schefer
,
R.
,
Wicksall
,
D.
, and
Agrawal
,
A.
,
2002
, “
Combustion of Hydrogen-Enriched Methane in a Lean Premixed Swirl-Stabilized Burner
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
843
851
.10.1016/S1540-7489(02)80108-0
12.
Chterev
,
I.
,
Foti
,
D.
,
Seitzman
,
J.
,
Menon
,
S.
, and
Lieuwen
,
T.
,
2012
, “
Flow Field Characterization in a Premixed, Swirling Annular Flow
,”
AIAA
Paper No. 2012-0450.10.2514/6.2012-450
13.
Chterev
,
I.
,
Foley
,
C.
,
Noble
,
D.
,
Ochs
,
B.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2012
, “
Shear Layer Flame Stabilization Sensitivities in a Swirling Flow
,”
ASME
Paper No. GT2012-68513.10.1115/GT2012-68513
14.
Lucca-Negro
,
O.
, and
O'Doherty
,
T.
,
2001
, “
Vortex Breakdown: A Review
,”
Progress Energy Combust. Sci.
,
27
(
4
), pp.
431
481
.10.1016/S0360-1285(00)00022-8
15.
Speth
,
R. L.
, and
Ghoniem
,
A. F.
,
2009
, “
Using a Strained Flame Model to Collapse Dynamic Mode Data in a Swirl-Stabilized Syngas Combustor
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2993
3000
.10.1016/j.proci.2008.05.072
16.
LaBry
,
Z. A.
,
Shanbhogue
,
S. J.
,
Speth
,
R. L.
, and
Ghoniem
,
A. F.
,
2011
, “
Flow Structures in a Lean-Premixed Swirl-Stabilized Combustor With Microjet Air Injection
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1575
1581
.10.1016/j.proci.2010.06.092
17.
LaBry
,
Z. A.
,
Shanbhogue
,
S. J.
,
Speth
,
R. L.
, and
Ghoniem
,
A. F.
,
2010
, “
Instability Suppression in a Swirl-Stabilized Combustor Using Microjet Air Injection
,”
AIAA
Paper No. 2010-1524.10.2514/6.2010-1524
18.
Shroll
,
A. P.
,
Shanbhogue
,
S. J.
, and
Ghoniem
,
A. F.
,
2012
, “
Dynamics and Stability Limits of Syngas Combustion in a Swirl-Stabilized Combustor
,”
ASME J. Eng. Gas Turbines Power
,
134
(
5
), p. 051504.10.1115/1.4004737
19.
Villarreal
,
R.
, and
Varghese
,
P. L.
,
2005
, “
Frequency-Resolved Absorption Tomography With Tunable Diode Lasers
,”
Appl. Opt.
,
44
(
31
), pp.
6786
6795
.10.1364/AO.44.006786
20.
Speth
,
R. L.
,
Altay
,
H. M.
,
Hudgins
,
D. E.
, and
Ghoniem
,
A. F.
,
2008
, “
Dynamics and Stability Limits of Syngas Combustion in a Swirl-Stabilized Combustor
,”
ASME
Paper No. GT2008-51023.10.1115/GT2008-51023
21.
Moeck
,
J. P.
,
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2012
, “
Nonlinear Interaction Between a Precessing Vortex Core and Acoustic Oscillations in a Turbulent Swirling Flame
,”
Combust. Flame
,
159
(
8
), pp.
2650
2668
.10.1016/j.combustflame.2012.04.002
22.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Progress Energy Combust. Sci.
,
32
(
2
), pp.
93
161
.10.1016/j.pecs.2005.10.002
23.
Underwood
,
D. S.
,
Waitz
,
I. A.
, and
Greitzer
,
E. M.
,
2000
, “
Confined Swirling Flows With Heat Release and Mixing
,”
J. Propul. Power
,
16
(
2
), pp.
169
177
.10.2514/2.5561
24.
Taamallah
,
S.
,
LaBry
,
Z. A.
,
Shanbhogue
,
S. J.
, and
Ghoniem
,
A. F.
,
2014
, “
Thermo-Acoustic Instabilities in Lean Premixed Swirl-Stabilized Combustion and Their Link to Acoustically Coupled and Decoupled Flame Macrostructures
,”
Proc. Combust. Inst.
(in press).
25.
LaBry
,
Z. A.
,
Taamallah
,
S.
,
Kewlani
,
G.
,
Shanbhogue
,
S. J.
, and
Ghoniem
,
A. F.
,
2014
, “
Mode Transition and Intermittency in an Acoustically Uncoupled Lean Premixed Swirl-Stabilized Combustor
,”
ASME
Paper No. GT2014-27266.10.1115/GT2014-27266
26.
Brucker
,
C.
, and
Althaus
,
W.
,
1995
, “
Study of Vortex Breakdown by Particle Tracking Velocimetry (PTV) Part 3: Time-Dependent Structure and Development of Breakdown-Modes
,”
Exp. Fluids
,
18
(
3
), pp.
174
186
.10.1007/BF00230262
27.
Billant
,
P.
,
Chomaz
,
J.
, and
Huerre
,
P.
,
1998
, “
Experimental Study of Vortex Breakdown in Swirling Jets
,”
J. Fluid Mech.
,
376
, pp.
183
219
.10.1017/S0022112098002870
You do not currently have access to this content.