In simulating chemically reacting flows, the differential entropy inequality (the local form of the second law of thermodynamics) must be satisfied in addition to the differential mass, momentum, and energy balances. Previously, we have shown that entropy violations occur when using a global/reduced mechanism. Herein we show that entropy violations also occur when using a detailed/skeletal/reduced mechanism. Using a recent theorem of “Slattery et al. (2011, “Role of Differential Entropy Inequality in Chemically Reacting Flows,” Chem. Eng. Sci., 66(21), pp. 5236–5243),” we illustrate how to modify a reduced chemical kinetics model to automatically satisfy the differential entropy inequality. The numerical solution of a methane laminar flame was improved when using reduced chemical kinetics modified in this way. In addition, an ad hoc temperature limiter is no longer necessary.

References

1.
Denbigh
,
K.
,
1963
,
The Principle of Chemical Equilibrium
,
Cambridge University
,
Cambridge, UK
.
2.
Slattery
,
J. C.
,
1999
,
Advanced Transport Phenomena
,
Cambridge University
,
Cambridge, UK
.
3.
Keck
,
J. C.
,
1990
, “
Rate-Controlled Constrained-Equilibrium Theory of Chemical Reactions in Complex Systems
,”
Progress Energy Combust. Sci.
,
16
(
2
), pp.
125
154
.10.1016/0360-1285(90)90046-6
4.
Ren
,
Z.
, and
Pope
,
S. B.
,
2004
, “
Entropy Production and Element Conservation in the Quasi-Steady-State Approximation
,”
Combust. Flame
,
137
(
1
), pp.
251
254
.10.1016/j.combustflame.2004.02.002
5.
Slattery
,
J. C.
,
Cizmas
,
P. G. A.
,
Karpetis
,
A. N.
, and
Chambers
,
S. B.
,
2011
, “
Role of Differential Entropy Inequality in Chemically Reacting Flows
,”
Chem. Eng. Sci.
,
66
(
21
), pp.
5236
5243
.10.1016/j.ces.2011.07.017
6.
Westbrook
,
C. K.
, and
Dryer
,
F. L.
,
1981
, “
Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames
,”
Combust. Sci. Technol.
,
27
(
1–2
), pp.
31
43
.10.1080/00102208108946970
7.
Peters
,
N.
, and
Williams
,
F. A.
,
1987
, “
The Asymptotic Structure of Stoichiometric Methane-Air Flames
,”
Combust. Flame
,
68
(
2
), pp.
185
207
.10.1016/0010-2180(87)90057-5
8.
Warnatz
,
J
.,
1984
, “
Rate Coefficients in the C/H/O Sytem
,”
Combustion Chemistry
,
Springer
,
New York
, pp.
197
360
.
9.
Wu
,
R.
, and
Hemchandra
,
S.
,
2011
, “
Premixed Flame Response to Equivalence Ratio Perturbations: Lean Flammability Cross-Over
,”
Seventh U.S. National Technical Meeting of the Combustion Institute
, Atlanta, GA, Mar. 20–23.
10.
Glassman
,
I.
,
1987
,
Combustion
, 2nd ed.,
Academic
,
Orlando, FL
.
11.
Prausnitz
,
J. M.
,
1969
,
Molecular Thermodynamics of Fluid-Phase Equilibria
,
Prentice-Hall, Englewood Cliffs
,
NJ
.
12.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Mikhail Goldenberg
,
C. T. B.
,
Hanson
,
R. K.
,
Song
,
S.
,
William
,
C.
,
Gardiner
,
J.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
,
2012
, GRI-Mech 3.0, accessed July 24, 2012, http://www.me.berkeley.edu/gri_mech
13.
Peters
,
N.
, and
Rogg
,
B.
,
1993
,
Reduced Kinetic Mechanisms for Applications in Combustion Systems
(
Lecture Notes in Physics
, Vol.
15
),
Springer
,
Berlin
, pp.
1
13
.
14.
Seshadri
,
K.
,
Bai
,
X. S.
,
Pitsch
,
H.
, and
Peters
,
N.
,
1998
, “
Asymptotic Analysis of the Structure of Moderately Rich Methane-Air Flames
,”
Combust. Flame
,
113
(
4
), pp.
589
602
.10.1016/S0010-2180(97)00272-1
15.
Kuo
,
K. K.
,
1986
,
Principles of Combustion
,
Wiley
,
New York
.
16.
David G.
Goodwin
,
Harry K.
Moffat
, and
Raymond L.
Speth
. “Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes,” Version 2.1.2, accessed July 24, 2012, http://cantera.github.com/docs/sphinx/html/index.html
17.
Jones
,
N. H.
,
2012
, “
The Importance of the Entropy Inequality on Numerical Simulation Using Reduced Methane-Air Reaction Mechanisms
,” Master’s thesis,
Texas A&M University
,
College Station, TX
.
18.
Barlow
,
R. S.
, and
Karpetis
,
A. N.
,
2003
, “
Methane Laminar Flame Combustion, Flame A
,” private communication.
You do not currently have access to this content.