In the present paper, a computational analysis of a high pressure confined premixed turbulent methane/air jet flames with heat loss to the walls is presented. In this scope, chemistry is reduced by the use of the flamelet generated manifold (FGM) method and the fluid flow is modeled in an large eddy simulation (LES) and Reynolds-averaged Navier–Stokes (RANS) context. The reaction evolution is described by the reaction progress variable, the heat loss is described by the enthalpy and the turbulence effect on the reaction is represented by the progress variable variance. A generic lab scale burner for methane high-pressure (5 bar) high-velocity (40 m/s at the inlet) preheated jet is adopted for the simulations, because of its gas-turbine relevant conditions. The use of FGM as a combustion model shows that combustion features at gas turbine conditions can be satisfactorily reproduced with a reasonable computational effort. Furthermore, the present analysis indicates that the physical and chemical processes controlling carbon monoxide (CO) emissions can be captured only by means of unsteady simulations.

References

1.
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.10.1080/00102200008935814
2.
van Oijen
,
J. A.
,
Lammers
,
F.
, and
de Goey
,
L. P. H.
,
2001
, “
Modeling of Complex Premixed Burner Systems by Using Flamelet-Generated Manifolds
,”
Combust. Flame
,
127
(
3
), pp.
2124
2134
.10.1016/S0010-2180(01)00316-9
3.
Daniele
,
S.
,
Jansohn
,
P.
,
Mantzaras
,
J.
, and
Boulouchos
,
K.
,
2010
, “
Turbulent Flame Speed for Syngas at Gas Turbine Relevant Conditions
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2937
2944
.10.1016/j.proci.2010.05.057
4.
Griebel
,
P.
,
Siewert
,
P.
, and
Jansohn
,
P.
,
2007
, “
Flame Characteristics of Turbulent Lean Premixed Methane/Air Flames at High Pressure: Turbulent Flame Speed and Flame Brush Thickness
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3083
3090
.10.1016/j.proci.2006.07.042
5.
Peters
,
N.
,
1984
, “
Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion
,”
Prog. Energy Combust. Sci.
,
10
(
3
), pp.
319
339
.10.1016/0360-1285(84)90114-X
6.
Pitsch
,
H.
,
2006
, “
Large-Eddy Simulation of Turbulent Combustion
,”
Annu. Rev. Fluid Mech.
,
38
(1), pp.
453
482
.10.1146/annurev.fluid.38.050304.092133
7.
Gicquel
,
O.
,
Darabiha
,
N.
, and
Thévenin
,
D.
,
2000
, “
Laminar Premixed Hydrogen/Air Counterflow Flame Simulations Using Flame Prolongation of ILDM With Differential Diffusion
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
1901
1908
.10.1016/S0082-0784(00)80594-9
8.
Donini
,
A.
,
Martin
,
S. M.
,
Bastiaans
,
R. J. M.
,
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2013
, “
Numerical Simulations of a Premixed Turbulent Confined Jet Flame Using the Flamelet Generated Manifold Approach With Heat Loss Inclusion
,”
ASME
Paper No. GT2013-94363.10.1115/GT2013-94363
9.
Fiorina
,
B.
,
Baron
,
R.
,
Gicquel
,
O.
,
Thevenin
,
D.
,
Carpentier
,
S.
, and
Darabiha
,
N.
,
2003
, “
Modeling Non-Adiabatic Partially Premixed Flames Using Flame-Prolongation of ILDM
,”
Combust. Theory Modell.
,
7
(
3
), pp.
449
470
.10.1088/1364-7830/7/3/301
10.
Donini
,
A.
,
Bastiaans
,
R. J. M.
,
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
, “
Differential Diffusion Effects Inclusion With Flamelet Generated Manifold for the Modeling of Stratified Premixed Cooled Flames
,”
Proc. Combust. Inst.
(in press).10.1016/j.proci.2014.06.050
11.
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2002
, “
Modelling of Premixed Counterflow Flames Using the Flamelet-Generated Manifold Method
,”
Combust. Theory Modell.
,
6
(
3
), pp.
463
478
.10.1088/1364-7830/6/3/305
12.
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2003
, “
A Numerical Study of Confined Triple Flames Using a Flamelet-Generated Manifold
,”
Combust. Theory Modell.
,
8
(
1
), pp.
141
163
.10.1088/1364-7830/8/1/008
13.
van Oijen
,
J. A.
,
Bastiaans
,
R. J. M.
,
Groot
,
G. R. A.
, and
de Goey
,
L. P. H.
,
2005
, “
A Flamelet Analysis of the Burning Velocity of Premixed Turbulent Expanding Flames
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
657
664
.10.1016/j.proci.2004.08.159
14.
Vreman
,
A. W.
,
Albreht
,
B. A.
,
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2008
, “
Premixed and Nonpremixed Generated Manifolds in Large-Eddy Simulation of Sandia Flame D and F
,”
Combust. Flame
,
153
(
3
), pp.
394
416
.10.1016/j.combustflame.2008.01.009
15.
Ramaekers
,
W. J. S.
,
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2012
, “
Stratified Turbulent Bunsen Flames: Flame Surface Analysis and Flame Surface Density Modelling
,”
Combust. Theory Modell.
,
16
(
6
), pp.
943
975
.10.1080/13647830.2012.686172
16.
Pantangi
,
P.
,
Sadiki
,
A.
,
Janicka
,
J.
,
Hage
,
M.
,
Dreizler
,
A.
,
van Oijen
,
J. A.
,
Hassa
,
C.
,
Heinze
,
J.
, and
Meier
,
U.
,
2011
, “
LES of Pre-Vaporized Kerosene Combustion at High Pressures in a Single Sector Combustor Taking Advantage of the Flamelet Generated Manifolds Method
,”
ASME
Paper No. GT2011-45819.10.1115/GT2011-45819
17.
Bekdemir
,
C.
,
Rijk
,
E. P.
,
Somers
,
L. M. T.
,
de Goey
,
L. P. H.
, and
Albrecht
,
B. A.
,
2010
, “
On the Application of the Flamelet Generated Manifold (FGM) Approach to the Simulation of an Igniting Diesel Spray
,”
SAE
Paper No. 2010-01-0358. 10.4271/2010-01-0358
18.
Donini
,
A.
,
Bastiaans
,
R. J. M.
,
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2014
, “
The Application of Flamelet-Generated Manifold in the Modeling of Stratified Premixed Cooled Flames
,”
ASME
Paper No. GT2014-26210.10.1115/GT2014-26210
19.
Smith
,
G. P.
,
D. M.
Golden
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, “
GRI-Mech 3.0 Chemical Reaction Mechanism
,” Gas Research Institute, Chicago, IL, http://www.me.berkeley.edu/gri_mech/
20.
Peters
,
N.
,
1991
,
Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane–Air Flames
,
M. D.
Smooke
, ed.,
Springer-Verlag
,
Berlin
.
21.
Smooke
,
M. D.
, and
Giovangigli
,
V.
,
1991
,
Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane–Air Flames
,
M. D.
Smooke
, ed.,
Springer-Verlag
,
Berlin
.
22.
Vreman
,
A. W.
,
van Oijen
,
J. A.
,
de Goey
,
L. P. H.
, and
Bastiaans
,
R. J. M.
,
2009
, “
Subgrid Scale Modeling in Large-Eddy Simulation of Turbulent Combustion Using Premixed Flamelet Chemistry
,”
Flow Turbul. Combust.
,
82
(
4
), pp.
511
535
.10.1007/s10494-008-9159-x
23.
Williams
,
F. A.
,
1994
,
Combustion Theory
,
Westview Press
,
Boulder, CO
.
24.
Knudsen
,
E.
,
Richardson
,
E. S.
,
Doran
,
E. M.
,
Pitsch
,
H.
, and
Chen
,
J. H.
,
2010
, “
Modeling Scalar Dissipation and Scalar Variance in Large Eddy Simulation: Algebraic and Transport Equation Closures
,”
Phys. Fluids
,
24
(
5
), p.
055103
.10.1063/1.4711369
25.
Cardoso
de Souza
,
T.
,
Bastiaans
,
R. J. M.
, and
Geurts
,
B.
,
2011
, “
LES and RANS of Premixed Combustion in a Gas-Turbine Like Combustor Using the Flamelet Generated Manifold Approach
,”
ASME
Paper No. GT2011-46355.10.1115/GT2011-46355
26.
ANSYS, ansys cfx Software, “
General Purpose Fluid Dynamics Program
,” ANSYS Inc., Canonsburg, PA, http://www.ansys.com
27.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids
,
3
(
7
), pp.
1760
1765
.10.1063/1.857955
28.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations: I. The Basic Experiment
,”
Mon. Weather Rev.
,
91
(3), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
29.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization-Group Analysis of Turbulence
,”
Phys. Rev. Lett.
,
57
(14), pp.
1722
1724
.10.1103/PhysRevLett.57.1722
30.
Peters
,
N.
,
1986
, “
Laminar Flamelet Concept in Turbulent Combustion
,”
Proc. Combust. Inst.
,
21
(1), pp.
1231
1250
.10.1016/S0082-0784(88)80355-2
You do not currently have access to this content.