In this paper, a new approach is presented for the gray-box identification of Wiener models (WM); and to evaluate the performance of the proposed method, it is used to estimate the dynamic behavior of a two-shaft industrial gas turbine (GT). The Wiener models, which have attracted a considerable attention due to their low computational demand and high accuracy, represent modeling techniques based on system identification. These models are composed of a linear dynamic part interconnected with a nonlinear static element, and the unknown parameters of these two parts are generally determined by black-box identification approaches. However, another identification method known as “gray-box identification” can also be employed, which uses the existing information about the static or dynamic behavior of a system to achieve the unknown parameters of the Wiener model. In this study, an innovative approach for improving the Wiener model’s capability of predicting the dynamic behavior of nonlinear systems is presented with the assumption that the static behavior of the examined system is known. In the proposed model called the enhanced Wiener model (EWM), the parameters of the linear dynamic part are allowed to vary with the operating conditions; and thus, this model provides a higher flexibility in estimating the dynamic behavior of the examined system compared to the conventional Wiener models. The EWM consists of a static nonlinear block and a linear dynamic block with varying parameters. Since gas turbine engines are essentially nonlinear in both the steady and transient conditions, the modeling of a gas turbine can be a suitable case for evaluating the effectiveness of the proposed model. In this regard, in order to estimate the parameters of a two-shaft industrial gas turbine, five multi-input single-output (MISO) EWMs with a special structure are employed in which the parameters of the dynamic part of each EWM is determined by an adaptive network-based fuzzy inference system (ANFIS). In order to evaluate the performance of the proposed model, the EWM results are compared with the result obtained by common system identification approaches like Wiener, Hammerstein, Wiener–Hammerstein, nonlinear autoregressive exogenous (NARX), and ANFIS models. The simulation results reveal that the proposed EWM not only is more flexible and effective in predicting the dynamic behavior of the examined gas turbine than the block-structured models, but it also outperforms the NARX and ANFIS models in estimating the static behavior of the gas turbine.

References

1.
Vroemen
,
B. G.
,
Van Essen
,
H. A.
,
Van Steenhoven
,
A. A.
, and
Kok
,
J. J.
,
1999
, “
Nonlinear Model Predictive Control of a Laboratory Gas Turbine Installation
,”
ASME J. Eng. Gas Turbines Power
,
121
(
4
), pp.
629
634
.10.1115/1.2818518
2.
Montazeri-Gh
,
M.
,
Nasiri
,
M.
, and
Jafari
,
S.
,
2011
, “
Real-Time Multi-Rate HIL Simulation Platform for Evaluation of a Jet Engine Fuel Controller
,”
Simul. Modell. Pract. Theory
,
19
(
3
), pp.
996
1006
.10.1016/j.simpat.2010.12.011
3.
Rowen
,
W. I.
,
1983
, “
Simplified Mathematical Representations of Heavy-Duty Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
105
(
4
), pp.
865
869
.10.1115/1.3227494
4.
Evans
,
C.
, and
Rees
,
D.
,
1998
, “
Frequency-Domain Identification of Gas Turbine Dynamics
,”
IEEE Trans. Control Syst. Technol.
,
6
(
5
), pp.
651
662
.10.1109/87.709500
5.
Al-Hamdan
,
Q. Z.
, and
Ebaid
,
M. S.
,
2005
, “
Modeling and Simulation of a Gas Turbine Engine for Power Generation
,”
ASME J. Eng. Gas Turbines Power
,
128
(
2
), pp.
302
311
.10.1115/1.2061287
6.
Asgari
,
H.
,
Venturini
,
M.
,
Chen
,
X.
, and
Sainudiin
,
R.
,
2014
, “
Modeling and Simulation of the Transient Behavior of an Industrial Power Plant Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
136
(
6
), p.
061601
.10.1115/1.4026215
7.
Crosa
,
G.
,
Pittaluga
,
F.
,
Trucco
,
A.
,
Beltrami
,
F.
,
Torelli
,
A.
, and
Traverso
,
F.
,
1998
, “
Heavy-Duty Gas Turbine Plant Aerothermodynamic Simulation Using Simulink
,”
ASME J. Eng. Gas Turbines Power
,
120
(
3
), pp.
550
556
.10.1115/1.2818182
8.
Kim
,
J. H.
,
Song
,
T. W.
,
Kim
,
T. S.
, and
Ro
,
S. T.
,
2000
, “
Model Development and Simulation of Transient Behavior of Heavy Duty Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
589
594
.10.1115/1.1370973
9.
Camporeale
,
S. M.
,
Fortunato
,
B.
, and
Mastrovito
,
M.
,
2002
, “
A Modular Code for Real Time Dynamic Simulation of Gas Turbines in Simulink
,”
ASME J. Eng. Gas Turbines Power
,
128
(
3
), pp.
506
517
.10.1115/1.2132383
10.
Chacartegui
,
R.
,
Sánchez
,
D.
,
Muñoz
,
A.
, and
Sánchez
,
T.
,
2011
, “
Real Time Simulation of Medium Size Gas Turbines
,”
Energy Convers. Manage.
,
52
(
1
), pp.
713
724
.10.1016/j.enconman.2010.07.050
11.
Prakash
,
R.
,
Rao
,
S. V.
, and
Skarvan
,
C. A.
,
1990
, “
Life Enhancement of a Gas Turbine Engine by Temperature Control
,”
Int. J. Turbo Jet Eng.
,
7
(
3–4
), pp.
187
206
.10.1515/TJJ.1990.7.3-4.187
12.
Vittal Rao
,
S.
,
Moellenhoff
,
D.
, and
Jaeger
,
J. A.
,
1990
, “
Linear State Variable Dynamic Model and Estimator Design for Allison T406 Gas Turbine
,”
Int. J. Turbo Jet Eng.
,
7
(
3–4
), pp.
179
186
.10.1515/TJJ.1990.7.3-4.179
13.
Breikin
,
T. V.
,
Arkov
,
V. Y.
, and
Kulikov
,
G. G.
,
2004
, “
Regularisation Approach for Real-Time Modelling of Aero Gas Turbines
,”
Control Eng. Pract.
,
12
(
4
), pp.
401
407
.10.1016/S0967-0661(03)00107-2
14.
Lichtsinder
,
M.
, and
Levy
,
Y.
,
2004
, “
Jet Engine Model for Control and Real-Time Simulations
,”
ASME J. Eng. Gas Turbines Power
,
128
(
4
), pp.
745
753
.10.1115/1.1915391
15.
Bershad
,
N.
,
Celka
,
P.
, and
Laughlin
,
S. M.
,
2001
, “
Analysis of Stochastic Gradient Identification of Wiener–Hammerstein Systems for Nonlinearities With Hermite Polynomial Expansions
,”
IEEE Trans. Signal Process.
,
49
(
5
), pp.
1060
1072
.10.1109/78.917809
16.
Marmarelis
,
V. Z.
,
1993
, “
Identification of Nonlinear Biological Systems Using Laguerre Expansions of Kernels
,”
Ann. Biomed. Eng.
,
21
(
6
), pp.
573
589
.10.1007/BF02368639
17.
Bai
,
E.-W.
,
Cai
,
Z.
,
Dudley-Javorosk
,
S.
, and
Shields
,
R. K.
,
2009
, “
Identification of a Modified Wiener–Hammerstein System and Its Application in Electrically Stimulated Paralyzed Skeletal Muscle Modeling
,”
Automatica
,
45
(
3
), pp.
736
743
.10.1016/j.automatica.2008.09.023
18.
Mohammadi
,
E.
,
Montazeri-Gh
,
M.
, and
Khalaf
,
P.
,
2013
, “
Metaheuristic Design and Optimization of Fuzzy-Based Gas Turbine Engine Fuel Controller Using Hybrid Invasive Weed Optimization/Particle Swarm Optimization Algorithm
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
031601
.10.1115/1.4025884
19.
Narendra
,
K. S.
, and
Gallman
,
P. G.
,
1966
, “
An Iterative Method for the Identification of Nonlinear Systems Using a Hammerstein Model
,”
IEEE Trans. Autom. Control
,
11
(
3
), pp.
546
550
.10.1109/TAC.1966.1098387
20.
Chang
,
F.
, and
Luus
,
R.
,
1971
, “
A Noniterative Method for Identification Using Hammerstein Model
,”
IEEE Trans. Autom. Control
,
16
(
5
), pp.
464
468
.10.1109/TAC.1971.1099787
21.
Schetzen
,
M.
,
1981
, “
Nonlinear System Modeling Based on the Wiener Theory
,”
Proc. IEEE
,
69
(
12
), pp.
1557
1573
.10.1109/PROC.1981.12201
22.
Hunter
,
W. I.
, and
Korenberg
,
M. J.
,
1986
, “
The Identification of Nonlinear Biological Systems: Wiener and Hammerstein Cascade Models
,”
Biol. Cybern.
,
55
(
2–3
), pp.
135
144
.10.1007/BF00341929
23.
Haber
,
R.
,
1988
, “
Parametric Identification of Nonlinear Dynamic Systems Based on Nonlinear Crosscorrelation Functions
,”
Control Theory Appl.
,
135
(
6
), pp.
405
420
.10.1049/ip-d.1988.0062
24.
Chen
,
C. H.
, and
Fassois
,
S. D.
,
1992
, “
Maximum Likelihood Identification of Stochastic Weiner–Hammerstein-Type Non-Linear Systems
,”
Mech. Syst. Signal Process.
,
6
(
2
), pp.
135
153
.10.1016/0888-3270(92)90061-M
25.
Wigren
,
T.
,
1993
, “
Recursive Prediction Error Identification Using the Nonlinear Wiener Model
,”
Automatica
,
29
(
4
), pp.
1011
1025
.10.1016/0005-1098(93)90103-Z
26.
Kalafatis
,
A.
,
Arifin
,
N.
,
Wang
,
L.
, and
Cluett
,
W. R.
,
1995
, “
A New Approach to the Identification of pH Processes Based on the Wiener Model
,”
Chem. Eng. Sci.
,
50
(
23
), pp.
3693
3701
.10.1016/0009-2509(95)00214-P
27.
Boutayeb
,
M.
, and
Darouach
,
M.
,
1995
, “
Recursive Identification Method for MISO Wiener–Hammerstein Model
,”
IEEE Trans. Autom. Control
,
40
(
2
), pp.
287
291
.10.1109/9.341794
28.
Pearson
,
R. K.
, and
Pottmann
,
M.
,
2000
, “
Gray-Box Identification of Block-Oriented Nonlinear Models
,”
J. Process Control
,
10
(
4
), pp.
301
315
.10.1016/S0959-1524(99)00055-4
29.
Crama
,
P.
, and
Schoukens
,
J.
,
2001
, “
Initial Estimates of Wiener and Hammerstein Systems Using Multisine Excitation
,”
IEEE Trans. Instrum. Meas.
,
50
(
6
), pp.
1791
1795
.10.1109/19.982982
30.
Voros
,
J.
,
2007
, “
An Iterative Method for Wiener–Hammerstein Systems Parameter Identification
,”
J. Elec. Eng.
,
58
(
2
), pp.
114
117
.http://iris.elf.stuba.sk/cgi-bin/jeeec?act=abs&no=2_107&ttl=9
31.
Ase
,
H.
,
Katayama
,
T.
, and
Tanaka
,
H.
,
2009
, “
A State-Space Approach to Identification of Wiener-Hammerstein Benchmark Model
,”
15th IFAC Symposium on System Identification
, Saint-Malo, France, July 6–8, Vol.
15
, No.
1
, pp.
1092
1097
.10.3182/20090706-3-FR-2004.00181
32.
Paduart
,
J.
,
Lauwers
,
L.
,
Pintelon
,
R.
, and
Schoukens
,
J.
,
2012
, “
Identification of a Wiener–Hammerstein System Using the Polynomial Nonlinear State Space Approach
,”
Control Eng. Pract.
,
20
(
11
), pp.
1133
1139
.10.1016/j.conengprac.2012.06.006
33.
Celka
,
P.
,
Bershad
,
N. J.
, and
Vesin
,
J.
,
2001
, “
Stochastic Gradient Identification of Polynomial Wiener Systems: Analysis and Application
,”
IEEE Trans. Signal Process.
,
49
(
2
), pp.
301
313
.10.1109/78.902112
34.
Bai
,
E. W.
,
2002
, “
A Blind Approach to the Hammerstein–Wiener Model Identification
,”
Automatica
,
38
(
6
), pp.
967
979
.10.1016/S0005-1098(01)00292-8
35.
Schroder
,
D.
,
Hintz
,
C.
, and
Rau
,
M.
,
2001
, “
Intelligent Modeling, Observation, and Control for Nonlinear Systems
,”
IEEE Trans. Mechatron.
,
6
(
2
), pp.
122
131
.10.1109/3516.928725
36.
Jurado
,
F.
, and
Carpio
,
J.
,
2003
, “
Modeling Micro-Turbines on the Distribution System Using Narx Structures
,”
Latin Am. Trans., IEEE (Revista IEEE America Latina)
,
1
(
1
), pp.
34
39
.10.1109/TLA.2003.1468617
37.
Ruano
,
A. E.
,
Fleming
,
P. J.
,
Teixeira
,
C.
,
Rodrı́Guez-Vázquez
,
K.
, and
Fonseca
,
C. M.
,
2003
, “
Nonlinear Identification of Aircraft Gas-Turbine Dynamics
,”
Neurocomputing
,
55
(
3–4
), pp.
551
579
.10.1016/S0925-2312(03)00393-X
38.
Basso
,
M.
,
Giarre
,
L.
,
Groppi
,
S.
, and
Zappa
,
G.
,
2005
, “
Narx Models of an Industrial Power Plant Gas Turbine
,”
IEEE Trans. Control Syst. Technol.
,
13
(
4
), pp.
599
604
.10.1109/TCST.2004.843129
39.
Bettocchi
,
R.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2006
, “
Artificial Intelligence for the Diagnostics of Gas Turbines—Part I: Neural Network Approach
,”
ASME J. Eng. Gas Turbines Power
,
129
(
3
), pp.
711
719
.10.1115/1.2431391
40.
Fast
,
M.
,
Assadi
,
M.
, and
De
,
S.
,
2009
, “
Development and Multi-utility of an ANN Model for an Industrial Gas Turbine
,”
Appl. Energy
,
86
(
1
), pp.
9
17
.10.1016/j.apenergy.2008.03.018
41.
Nikpey
,
H.
,
Assadi
,
M.
, and
Breuhaus
,
P.
,
2013
, “
Development of an Optimized Artificial Neural Network Model for Combined Heat and Power Micro Gas Turbines
,”
Appl. Energy
,
108
, pp.
137
148
.10.1016/j.apenergy.2013.03.016
42.
Bettocchi
,
R.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2006
, “
Artificial Intelligence for the Diagnostics of Gas Turbines—Part II: Neuro-Fuzzy Approach
,”
ASME J. Eng. Gas Turbines Power
,
129
(
3
), pp.
720
729
.10.1115/1.2431392
43.
Shabanian
,
M.
, and
Montazeri
,
M.
,
2011
, “
A Neuro-Fuzzy Online Fault Detection and Diagnosis Algorithm for Nonlinear and Dynamic Systems
,”
Int. J. Control, Autom., Syst.
,
9
(
4
), pp.
665
670
.10.1007/s12555-011-0407-9
44.
Li
,
H.-X.
, and
Chen
,
C. L. P.
,
2000
, “
The Equivalence Between Fuzzy Logic Systems and Feedforward Neural Networks
,”
IEEE Trans. Neural Networks
,
11
(
2
), pp.
356
365
.10.1109/72.839006
45.
Jang
,
J.-S. R.
,
1993
, “
ANFIS: Adaptive-Network-Based Fuzzy Inference System
,”
IEEE Trans. Syst., Man Cybern.
,
23
(
3
), pp.
665
685
.10.1109/21.256541
46.
Billings
,
S. A.
, and
Fakhouri
,
S. Y.
,
1982
, “
Identifications of Systems Containing Linear Dynamics and Static Nonlinear Elements
,”
Automatica
,
18
(
1
), pp.
15
26
.10.1016/0005-1098(82)90022-X
47.
G. G.
Kulikov
, and
Thompson
,
H. A.
,
2004
,
Dynamic Modelling of Gas Turbines: Identification, Simulation, Condition Monitoring and Optimal Control
,
Springer-Verlag, Ltd.
,
London
.
48.
Aguirre
,
L. A.
,
Coelho
,
M. C. S.
, and
Correa
,
M. V.
,
2005
, “
On the Interpretation and Practice of Dynamical Differences Between Hammerstein and Wiener Models
,”
IEE Proc.-Control Theory Appl.
,
152
(
4
), pp.
349
356
.10.1049/ip-cta:20045152
49.
Mehrabian
,
A. R.
, and
Lucas
,
C.
,
2006
, “
A Novel Numerical Optimization Algorithm Inspired from Weed Colonization
,”
Ecol. Inf.
,
1
(
4
), pp.
355
366
.10.1016/j.ecoinf.2006.07.003
50.
Jaw
,
L. C.
, and
Mattingly
,
J. D.
,
2009
,
Aircraft Engine Controls: Design, System Analysis, and Health Monitoring
(AIAA Education Series),
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
51.
Delio
,
G. J.
,
1952
, “
Evaluation of Three Methods for Determining Dynamic Characteristics of a Turbojet Engine
,” National Advisory Committee for Aeronautics Collection, Cleveland, OH, Technical Report No. 2634.
52.
Siemens
,
2005
, “
SGT-600 Industrial Gas Turbine
,”
Siemens Industrial Turbomachinery, Inc.
,
Duisburg, Germany
.
53.
Massucco
,
S.
,
Pitto
,
A.
, and
Silvestro
,
F.
,
2011
, “
A Gas Turbine Model for Studies on Distributed Generation Penetration Into Distribution Networks
,”
IEEE Trans. Power Syst.
,
26
(
3
), pp.
992
999
.10.1109/TPWRS.2010.2091290
54.
Strand
,
T.
,
2006
, “
Industrial Gas Turbine Control
,” Siemens Power Generation, Siemens AG, Erlangen, Germany, available at: www.energy.kth.se/courses/4a1626/ahpt2006/gtcontrol.pdf
55.
Nelles
,
O.
, and
Isermann
,
R.
,
1995
, “
Identification of Nonlinear Dynamic Systems Classical Methods Versus Radial Basis Function Networks
,”
American Control Conference
(
ACC
),
Seattle, WA
, June 21–23, pp.
3786
3790
.10.1109/ACC.1995.533847
56.
Nelles
,
O.
,
2001
,
Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models
,
Springer
,
New York
.
57.
Deflorian
,
M.
, and
Zaglauer
,
S.
,
2011
, “
Design of Experiments for Nonlinear Dynamic System Identification
,”
18th IFAC World Congress
, Milano, Aug. 28–Sept. 2, pp.
13179
13184
.10.3182/20110828-6-IT-1002.01502
58.
Rodriquez
,
K.
,
1999
, “
Multiobjective Evolutionary Algorithms in Non-Linear System Identification
,” Ph.D. thesis, University of Sheffield, Sheffield, UK.
59.
Pizzileo
,
B.
,
Li
,
K.
,
Irwin
,
G. W.
, and
Zhao
,
W.
,
2012
, “
Improved Structure Optimization for Fuzzy-Neural Networks
,”
IEEE Trans. Fuzzy Syst.
,
20
(
6
), pp.
1076
1089
.10.1109/TFUZZ.2012.2193587
You do not currently have access to this content.