This paper describes a classification method for automatic fault detection in nuclear power plant (NPP) data. The method takes as input time series associated to specific parameters and realizes signal classification by using a clustering algorithm based on possibilistic C-means (PCM). This approach is applied to time series recorded in a CANDU® power plant and is validated by comparison with results provided by a classification method based on principal component analysis (PCA).

References

1.
Ma
,
J.
, and
Jiang
,
J.
,
2011
, “
Applications of Fault Detection and Diagnosis Methods in Nuclear Power Plants: A Review
,”
Prog. Nucl. Energy
,
53
(
3
), pp.
255
266
.10.1016/j.pnucene.2010.12.001
2.
Gertler
,
J. J.
,
1988
, “
Survey of Model-Based Failure Detection and Isolation in Complex Plants
,”
IEEE Control Syst. Mag.
,
8
(
6
), pp.
3
11
.10.1109/37.9163
3.
Isermann
,
R.
,
2006
,
Fault-Diagnosis Systems: An Introduction From Fault Detection to Fault Tolerance
,
Springer-Verlag
,
Berlin
.
4.
Uhrig
,
R. E.
, and
Hines
,
J. W.
,
2005
, “
Computational Intelligence in Nuclear Engineering
,”
Nucl. Eng. Technol.
,
37
(
2
), pp.
127
138
.
5.
Hashemian
,
H. M.
, and
Feltus
,
M. A.
,
2006
,
On-Line Condition Monitoring Applications in Nuclear Power Plants
,
NPIC and HMIT
,
Albuquerque, NM
.
6.
Chiang
,
L. H.
,
Russell
,
E. L.
, and
Braatz
,
R. D.
,
2001
,
Fault Detection and Diagnosis in Industrial Systems
,
Springer-Verlag
,
Berlin
.
7.
Duda
,
P. E.
, and
Hart
,
D. G.
,
2001
,
Pattern Classification
,
Wiley
,
New York
.
8.
Mercurioa
,
D.
,
Podofillinia
,
L.
,
Ziob
,
E.
, and
Danga
,
V.
,
2009
, “
Identification and Classification of Dynamic Event Tree Scenarios Via Possibilistic Clustering: Application to a Steam Generator Tube Rupture Event
,”
Accid. Anal. Prev.
,
41
(
6
), pp.
1180
1191
.10.1016/j.aap.2008.08.013
9.
Krishnapuram
,
R.
, and
Keller
,
J.
,
1993
, “
A Possibilistic Approach to Clustering
,”
IEEE Trans. Fuzzy Syst.
,
1
(
2
), pp.
98
110
.10.1109/91.227387
10.
Krishnapuram
,
R.
, and
Keller
,
J.
,
1996
, “
The Possibilistic C-Means Algorithm: Insights and Recommendations
,”
IEEE Trans. Fuzzy Syst.
,
4
(
3
), pp.
385
393
.10.1109/91.531779
11.
Kaistha
,
N.
, and
Upadhyaya
,
B. R.
,
2001
, “
Incipient Fault Detection and Isolation of Field Devices in Nuclear Power Systems Using Principal Component Analysis
,”
Nucl. Technol.
,
136
(
2
), pp.
221
230
.
12.
Ma
,
J.
, and
Jiang
,
J.
,
2009
,
A Fault Detection and Isolation Technique for In-Core Flux Detectors
,
NPIC and HMIT
,
Knoxville, TN
.
13.
Ma
,
J.
, and
Jiang
,
J.
,
2011
, “
Detection and Identification of Faults in NPP Instruments Using Kernel Principal Component Analysis
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
032901
.10.1115/1.4004596
14.
CANDU 6 Program Team
,
2005
, “
CANDU 6: Technical Summary
,” Reactor Development Business Unit, Atomic Energy of Canada Limited (AECL), Chalk River, ON, Canada.
15.
Bezdek
,
J. C.
,
1981
,
Pattern Recognition With Fuzzy Objective Function Algorithms
,
Kluwer, Norwell
,
MA
.
16.
Joliffe
,
I. T.
,
1986
,
Principal Component Analysis
,
Springer-Verlag
,
Berlin
.
You do not currently have access to this content.