The transition-piece of a gas turbine engine is subjected to high thermal loads as it collects high temperature combustion products from the gas generator to a turbine. This generally produces high thermal stress levels in the casing of the transition piece, strongly limiting its life expectations and making it one of the most critical components of the entire engine. The reliable prediction of such thermal loads is hence a crucial aspect to increase the transition-piece life span and to assure safe operations. The present study aims to investigate the aerothermal behavior of a gas turbine engine transition-piece and in particular to evaluate working temperatures of the casing in relation to the flow and heat transfer situation inside and outside the transition-piece. Typical operating conditions are considered to determine the amount of heat transfer from the gas to the casing by means of computational fluid dynamics (CFD). Both conjugate approach and wall fixed temperature have been considered to compute the heat transfer coefficient (HTC), and more in general, the transition-piece thermal loads. Finally a discussion on the most convenient HTC expression is provided.

References

References
1.
Kapat
,
J.
,
Wang
,
T.
,
Ryan
,
W.
,
Diakunchak
,
I.
, and
Bannister
,
R.
,
1997
, “
Experimental Studies of Air Extraction for Cooling and/or Gasification in Gas Turbine Applications
,”
ASME J. Eng. Gas Turbines Power
,
119
(
4
), pp.
807
814
.10.1115/1.2817058
2.
Wilson
,
D.
,
1984
,
The Design of High-Efficiency Turbomachinery and Gas Turbines
,
MIT Press
, Cambridge, MA.
3.
Wang
,
L.
, and
Wang
,
T.
,
2013
, “
Investigation of the Effect of Perforated Sheath on Thermal-Flow Characteristics Over a Gas Turbine Reverse-Flow Combustor, Part 1—Experiment
,”
ASME
Paper No. GT2013-94474. 10.1115/GT2013-94474
4.
Kapat
,
J.
,
Agrawal
,
A.
, and
Yang
,
T.
,
1997
, “
Air Extraction in a Gas Turbine for Integrated Gasification Combined Cycle (IGCC): Experiments and Analysis
,”
ASME J. Eng. Gas Turbines Power.
119
(1), pp. 20–26.10.1115/1.2815551
5.
Kapat
,
J.
,
Wang
,
T.
,
Ryan
,
W.
,
Diakunchak
,
I.
, and
Bannister
,
R.
,
1996
, “
Cold Flow Experiments in a Sub-Scale Model of the Diffuser-Combustor Section of an Industrial Gas Turbine
,”
ASME
Paper No. 96-GT-518.
6.
Wang
,
T.
,
Kapat
,
J.
,
Ryan
,
W.
,
Diakunchak
,
I.
, and
Bannister
,
R.
,
1999
, “
Effect of Air Extraction for Cooling and/or Gasification on Combustor Flow Uniformity
,”
ASME J. Eng. Gas Turbines Power
,
121
(
1
), pp.
46
54
.10.1115/1.2816311
7.
Zhou
,
D.
,
Wang
,
T.
, and
Ryan
,
W.
,
1996
, “
Cold Flow Computations for the Diffuser-Combustor Section of an Industrial Gas Turbine
,”
ASME
Paper No. 96-GT-513.
8.
Wang
,
L.
, and
Wang
,
T.
,
2013
, “
Investigation of the Effect of Perforated Sheath on Thermal-Flow Characteristics Over a Gas Turbine Reverse-Flow Combustor, Part 2—Computational Analysis
,”
ASME
Paper No. GT2013-94475. 10.1115/GT2013-94475
9.
Alfaro-Ayala
,
J. A.
,
Gallegos-Muñoz
,
A.
,
Riesco-Ávila
,
J. M.
,
Flores-López
,
M.
,
Campos-Amezcua
,
A.
, and
Mani-González
,
A. G.
,
2011
, “
Analysis of the Flow in the Combustor-Transition Piece Considering the Variation in the Fuel Composition
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
2
), p.
021003
.10.1115/1.4004247
10.
Maffulli
,
R.
, and
He
,
L.
,
2013
, “
Wall Temperature Effects on Heat Transfer Coefficient
,”
ASME
Paper No. GT2013-94291. 10.1115/GT2013-94291
11.
Dorfman
,
A.
, and
Renner
,
Z.
,
2009
, “
Conjugate Problems in Convective Heat Transfer: Review
,”
Math. Probl. Eng.
,
2009
, p. 927350.
12.
Bohn
,
D.
,
Ren
,
J.
, and
Kusterer
,
K.
,
2003
, “
Conjugate Heat Transfer Analysis for Film Cooling Configurations With Different Hole Geometries
,”
ASME
Paper No. GT2003-38369. 10.1115/GT2003-38369
13.
Dees
,
J. E.
,
Bogard
,
D. G.
,
Ledezma
,
G. A.
, and
Laskowski
,
G. M.
,
2011
, “
The Effects of Conjugate Heat Transfer on the Thermal Field Above a Film Cooled Wall
,”
ASME
Paper No. GT2011-46617. 10.1115/GT2011-46617
14.
Dawes
,
W. N.
,
Kellar
,
W. P.
, and
Harvey
,
S. A.
,
2010
, “
Towards Cooled Turbine Preliminary Life Prediction Via Concurrent Aerodynamic, Thermal and Material Stress Simulations on Conjugate Meshes
,”
ASME
Paper No. GT2010-22482. 10.1115/GT2010-22482
15.
Andreini
,
A.
,
Da Soghe
,
R.
,
Facchini
,
B.
,
Mazzei
,
L.
,
Colantuoni
,
S.
, and
Turrini
,
F.
,
2013
, “
Local Source Based CFD Modeling of Effusion Cooling Holes: Validation and Application to an Actual Combustor Test Case
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
011506
.10.1115/1.4025316
16.
Kaufmann
,
E.
,
1996
, “
Considerations When Burning Ash-Bearing Fuels in Heavy Duty Gas Turbines
,” GE Power Generation, Schenectady, NY, Technical Report No. GER-3764A.
17.
Zhou
,
L.
, and
Wang
,
T.
,
2012
, “
An Investigation of Treating Adiabatic Wall Temperature as the Driving Temperature in Film Cooling Studies
,”
ASME J. Turbomach.
,
134
(
6
), p.
061032
.10.1115/1.4006311
You do not currently have access to this content.