Auto-eliminating clearance auxiliary bearing devices (ACABD) can automatically eliminate the protective clearance between the ball bearing's outer race and the ACABD's supports, thus recenter the rotor when active magnetic bearing (AMB) system fails. This paper introduces the mechanical structure and working principles of the ACABD. When the rotor drops, numerical and experimental studies on the transient responses of the rotor and the ACABD's supports are also conducted as follows. First, we propose an equivalent clearance circle method to establish dynamic models of rotor dropping on the ACABD. Based on these models, the rotor dropping simulations are carried out to investigate the modes of lubrication and the ACABD's support shape's influences on the performance and execution time of clearance elimination. Second, various AMB rotor dropping tests are performed on our experimental setup with different ACABD supporting conditions. Indicated from the basically consistent simulation and experimental results, the correctness of the theoretical analysis and the successful operation of ACABD have been verified. Moreover, with the grease lubrication in the ball bearing and convex shape supports, the ACABD can eliminate the protective clearance within approximately 0.5 s upon the rotor drops and then sustain the rotor to operate stably around its original rotation center. Because of clearance elimination, the dramatic impact between the ball bearing and the supports is avoided and the impact forces among each part are effectively reduced. Meanwhile, the possibility of incurring full-clearance backward whirling motion is eliminated.

References

1.
Schweitzer
,
G.
,
Bleuler
,
H.
, and
Traxler
,
A.
,
1994
, “
Active Magnetic Bearing: Basics, Properties and Applications of Active Magnetic Bearing
,” vdf, Hochschulverlag an der ETH Zürich, Zürich, Switzerland.
2.
Yu
,
L.
,
2003
,
Controllable Magnetic Suspension Rotor System
,
Science Press
,
Beijing, China
(in Chinese).
3.
Cole
,
M. O. T.
,
Keogh
,
P. S.
, and
Burrows
,
C. R.
,
2002
, “
The Dynamic Behavior of a Rolling Element Auxiliary Bearing Following Rotor Impact
,”
ASME J. Tribol.
,
124
(2), pp.
406
413
.10.1115/1.1430673
4.
Kirk
,
R. G.
, and
Ishii
,
T.
,
1993
, “
Transient Rotor Drop Analysis of Rotors Following Magnetic Bearing Power Outage
,”
Magnetic Bearings, Magnetic Drives and Dry Gas Seals Conference & Exhibition (MAG'93)
, Alexandria, VA, July 29–30, pp.
53
61
.
5.
Ishii
,
T.
, and
Kirk
,
R. G.
,
1996
, “
Transient Response Technique Applied to Active Magnetic Bearing Machinery During Rotor Drop
,”
ASME J. Vibr. Acoust
,
118
(2), pp.
154
163
.10.1115/1.2889643
6.
Tessier
,
L. P.
,
1997
, “
The Development of an Auxiliary Bearing Landing System for a Flexible AMB-Supported Hydrogen Process Compressor Rotor
,”
Industrial Conference and Exhibition on Magnetic Bearings (MAG'97), Alexandria, VA, Aug. 21–22
, pp.
120
128
.
7.
Zeng
,
S.
,
2003
, “
Modelling and Experimental Study of the Transient Response of an Active Magnetic Bearing Rotor During Rotor Drop on Back-Up Bearings
,”
Proc. Inst. Mech. Eng. Part I
,
217
(5), pp.
505
517
.10.1243/095765003322407557
8.
Kaur
,
R. G.
, and
Heshmat
,
H.
,
2002
, “
100 mm Diameter Self-Contained Solid/Powder Lubricated Auxiliary Bearing Operated at 30,000 rpm
,”
Tribol. Trans.
,
45
(1), pp.
76
84
.10.1080/10402000208982524
9.
Keogh
,
P. S.
, and
Cole
,
M. O. T.
,
2003
, “
Rotor Vibration With Auxiliary Bearing Contact in Magnetic Bearing Systems. Part 1: Synchronous Dynamics
,”
Proc. Inst. Mech. Eng. Part C
,
217
(4), pp.
377
392
.10.1243/095440603321509676
10.
Sun
,
G.
,
2006
, “
Rotor Drop and Following Thermal Growth Simulations Using Detailed Auxiliary Bearing and Damper Models
,”
J. Sound. Vib
,
289
(1–3), pp.
334
359
.10.1016/j.jsv.2005.02.008
11.
Allaire
,
P. E.
,
Maslen
,
E. H.
,
Kim
,
H. C.
,
Bearnson
,
G. B.
, and
Olsen
,
D. B.
,
1996
, “
Design of a Magnetic Bearing-Supported Prototype Centrifugal Artificial Heart Pump
,”
Tribol. Trans.
,
39
(
3
), pp.
663
669
.10.1080/10402009608983580
12.
Reitsma
,
T. W.
,
2002
, “
Development of Long-Life Auxiliary Bearings for Critical Service Turbo-Machinery and High-Speed Motors
,”
8th International Symposium on Magnetic Bearings (ISMB8)
, Mito, Japan, Aug. 26–28, pp.
507
514
.
13.
Sun
,
G.
,
Palazzolo
,
A. B.
,
Provenza
,
A.
, and
Montague
,
G.
,
2004
, “
Detailed Ball Bearing Model for Magnetic Suspension Auxiliary Service
,”
J. Sound. Vib
,
269
(
3
), pp.
933
963
.10.1016/S0022-460X(03)00207-4
14.
Schweitzer
,
G.
,
2005
, “
Safety and Reliability Aspects for Active Magnetic Bearing Applications—A Survey
,”
Proc. Inst. Mech. Eng. Part I
,
219
(5), pp.
383
392
.10.1243/095765005X31135
15.
Chen.
,
H. M.
,
Walton
,
J.
, and
Heshmat
,
H.
,
1997
, “
Zero Clearance Auxiliary Bearings for Magnetic Bearing Systems
,”
International Gas Turbine and Aeroengine Congress and Exhibition
, Orlando, FL, June 2–5,
ASME
Paper No. 97-GT-112.
16.
Salehi
,
M.
, and
Heshmat
,
H.
,
2008
, “
On the Dynamic and Thermal Performance of a Zero Clearance Auxiliary Bearing (ZCAB) for a Magnetic Bearing System
,”
Tribol. Trans.
,
43
(3), pp.
435
440
.10.1080/10402000008982360
17.
Wu
,
L. S.
,
Chen
,
H.
,
Shi
,
T. L.
,
Chen
,
X.
, and
Zhou
,
D. S.
,
2010
, “
Design of a New-Style Assistant Bearing of Magnetic Bearing
,”
Mach. Des. Manuf.
,
3
, pp.
32
34
(in Chinese).
18.
Heshmat
,
H.
,
Chen
,
H. M.
, and
Walton
,
J. F.
, II
,
2000
, “
On the Performance of Hybrid Foil-Magnetic Bearing
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
73
81
.10.1115/1.483178
19.
Swanson
,
E. E.
,
Heshmat
,
H.
, and
Walton
,
J.
,
2002
, “
Performance of a Foil-Magnetic Hybrid Bearing
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
375
382
.10.1115/1.1417485
20.
Ku
,
C. P. R.
, and
Heshmat
,
H.
,
1993
, “
Compliant Foil Bearing Structural Stiffness Analysis—Part II: Experimental Investigation
,”
ASME J. Tribol.
,
115
(
3
), pp.
364
369
.10.1115/1.2921644
21.
Kim
,
D.
, and
Varrey
,
M. K.
,
2012
Imbalance Response and Stability Characteristics of a Rotor Supported by Hybrid Air Foil Bearings
,”
Tribol. Trans.
,
55
(
4
), pp.
529
538
.10.1080/10402004.2012.681341
22.
Zhu
,
Y. L.
,
Jin
,
C. W.
, and
Xu
,
L. X.
,
2013
, “
Dynamic Responses of Rotor Drops Onto Double-Decker Catcher Bearing
,”
Chin. J. Mech. Eng.
,
26
(1), pp.
104
113
.10.3901/CJME.2013.01.104
23.
Zhu
,
Y. L.
, and
Xu
,
L. X.
,
2011
, “
Dynamical Analysis of Catcher Bearing With Elastic Ring
,”
Chin. J. Mech. Eng.
,
47
, pp.
49
57
(in Chinese).
24.
Hertz
,
H.
,
1881
, “
On the Contact of Elastic Solids
,”
J. Die Reine Angew. Math.
,
92
, pp.
156
171
.
25.
Liu
,
Z. J.
,
He
,
S. Q.
, and
Liu
,
H.
,
2007
,
Application of Rolling Element Bearings
,
China Machine Press
,
Beijing, China
(in Chinese).
26.
Hunt
,
K. H.
, and
Crossley
,
F. R. E.
,
1975
, “
Coefficient of Restitution Interpreted as Damping in Vibroimpact
,”
ASME J. Appl. Mech.
,
42
(2), pp.
440
445
.10.1115/1.3423596
27.
Dubowsky
,
S.
, and
Freudenstein
,
F.
,
1971
, “
Dynamic Analysis of Mechanical Systems With Clearances—Part 1: Formation of Dynamic Model
,”
ASME J. Manuf. Sci. Eng.
,
93
(1), pp.
305
309
.10.1115/1.3427895
28.
Hairer
,
E.
,
Norsett
,
S. P.
, and
Wanner
,
G.
,
1993
,
Solving Ordinary Differential Equations I: Non-Stiffness Problem
,
Springer
,
New York
.
You do not currently have access to this content.