The local equivalence ratio distribution in a flame affects its shape and response under velocity perturbations. The forced heat release response of stratified lean-premixed flames to acoustic velocity fluctuations is investigated via chemiluminescence measurements and spatial Fourier transfer analysis. A laboratory scale burner and its boundary conditions were designed to generate high-amplitude acoustic velocity fluctuations in flames. These flames are subject to inlet radial equivalence ratio distributions created via a split annular fuel delivery system outfitted with a swirling stabilizer. Simultaneous measurements on the oscillations of inlet velocity and heat release rate were carried out via a two-microphone technique and OH* chemiluminescence. The measurements show that, for a given mean total power and equivalence ratio (φg=0.60), the flame responses vary significantly on the equivalence ratio split, forcing frequency, and velocity fluctuation amplitude, with significant nonlinearities with respect to forcing amplitude and stratification ratio (SR). The spatial Fourier transfer analysis shows how the dependence is affected by the underlying changes in the rate of heat release, including the direction and speed of the perturbation within the flame.

References

1.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
, “Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms and Modeling,” American Institute of Aeronautics and Astronautics, Reston, VA.
2.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.10.1016/j.pecs.2009.01.002
3.
Candel
,
S.
,
2002
, “
Combustion Dynamics and Control: Progress and Challenges
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
1
28
.10.1016/S1540-7489(02)80007-4
4.
Huang
,
Y.
,
Wang
,
S.
, and
Yang
,
V.
,
2006
, “
Systematic Analysis of Lean-Premixed Swirl-Stabilized Combustion
,”
AIAA J.
,
44
(
4
), pp.
724
740
.10.2514/1.15382
5.
Huang
,
Y.
,
Sung
,
H.-G.
,
Hsieh
,
S.-Y.
, and
Yang
,
V.
,
2003
, “
Large-Eddy Simulation of Combustion Dynamics of Lean-Premixed Swirl-Stabilized Combustor
,”
J. Propul. Power
,
19
(
5
), pp.
782
794
.10.2514/2.6194
6.
Armitage
,
C.
,
Balachandran
,
R.
,
Mastorakos
,
E.
, and
Cant
,
R.
,
2006
, “
Investigation of the Nonlinear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations
,”
Combust. Flame
,
146
(
3
), pp.
419
436
.10.1016/j.combustflame.2006.06.002
7.
Schuller
,
T.
,
2003
, “
Self-Induced Combustion Oscillations of Laminar Premixed Flames Stabilized on Annular Burners
,”
Combust. Flame
,
135
(
4
), pp.
525
537
.10.1016/j.combustflame.2003.08.007
8.
Bellows
,
B. D.
,
Neumeier
,
Y.
, and
Lieuwen
,
T.
,
2006
, “
Forced Response of a Swirling, Premixed Flame to Flow Disturbances
,”
J. Propul. Power
,
22
(
5
), pp.
1075
1084
.10.2514/1.17426
9.
Fleifil
,
M.
, and
Annaswamy
,
A.
,
1996
, “
Response of a Laminar Premixed Flame to Flow Oscillations: A Kinematic Model and Thermoacoustic Instability Results
,”
Combust. Flame
,
2180
(
96
), pp.
487
510
.10.1016/0010-2180(96)00049-1
10.
Cho
,
J. H.
, and
Lieuwen
,
T.
,
2005
, “
Laminar Premixed Flame Response to Equivalence Ratio Oscillations
,”
Combust. Flame
,
140
(
1–2
), pp.
116
129
.10.1016/j.combustflame.2004.10.008
11.
Birbaud
,
A.
,
Ducruix
,
S.
,
Durox
,
D.
, and
Candel
,
S.
,
2008
, “
The Nonlinear Response of Inverted ‘V’ Flames to Equivalence Ratio Nonuniformities
,”
Combust. Flame
,
154
(
3
), pp.
356
367
.10.1016/j.combustflame.2008.05.017
12.
Sengissen
,
A. X.
,
Poinsot
,
T. J.
,
Van Kampen
,
J. F.
, and
Kok
,
J. B.
,
2007
, “
Response of a Swirled Non-Premixed Burner to Fuel Flow Rate Modulation
,”
Complex Effects in Large Eddy Simulations
,
Springer
,
New York
, pp.
337
351
.
13.
Lieuwen
,
T.
,
Neumeier
,
Y.
, and
Zinn
,
B.
,
1998
, “
The Role of Unmixedness and Chemical Kinetics in Driving Combustion Instabilities in Lean Premixed Combustors
,”
Combust. Sci. Technol.
,
135
(
1–6
), pp.
193
211
.10.1080/00102209808924157
14.
Balachandran
,
R.
,
Ayoola
,
B.
,
Kaminski
,
C.
,
Dowling
,
A.
, and
Mastorakos
,
E.
,
2005
, “
Experimental Investigation of the Nonlinear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations
,”
Combust. Flame
,
143
(
1–2
), pp.
37
55
.10.1016/j.combustflame.2005.04.009
15.
Kim
,
K.
,
Lee
,
J.
,
Quay
,
B.
, and
Santavicca
,
D.
,
2010
, “
Response of Partially Premixed Flames to Acoustic Velocity and Equivalence Ratio Perturbations
,”
Combust. Flame
,
157
(
9
), pp.
1731
1744
.10.1016/j.combustflame.2010.04.006
16.
Kim
,
K.
,
Lee
,
J.
,
Quay
,
B.
, and
Santavicca
,
D.
,
2011
, “
Experimental Investigation of the Nonlinear Response of Swirl-Stabilized Flames to Equivalence Ratio Oscillations
,”
ASME J. Eng. Gas Turbines Power
,
133
(
2
), p.
021502
.10.1115/1.4001999
17.
Sattelmayer
,
T.
,
2003
, “
Influence of the Combustor Aerodynamics on Combustion Instabilities From Equivalence Ratio Fluctuations
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
11
19
.10.1115/1.1365159
18.
Scarinci
,
T.
,
Freeman
,
C.
, and
Day
,
I.
,
2004
, “
Passive Control of Combustion Instability in a Low Emissions Aeroderivative Gas Turbine
,”
ASME
Paper No. GT2004-53767. 10.1115/GT2004-53767
19.
Barlow
,
R.
,
Wang
,
G.-H.
,
Anselmo-Filho
,
P.
,
Sweeney
,
M.
, and
Hochgreb
,
S.
,
2009
, “
Application of Raman/Rayleigh/LIF Diagnostics in Turbulent Stratified Flames
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
945
953
.10.1016/j.proci.2008.06.070
20.
Anselmo-Filho
,
P.
,
Hochgreb
,
S.
,
Barlow
,
R.
, and
Cant
,
R.
,
2009
, “
Experimental Measurements of Geometric Properties of Turbulent Stratified Flames
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
1763
1770
.10.1016/j.proci.2008.05.085
21.
Giezendanner
,
R.
,
Keck
,
O.
,
Weigand
,
P.
,
Meier
,
W.
,
Meier
,
U.
,
Stricker
,
W.
, and
Aigner
,
M.
,
2003
, “
Periodic Combustion Instabilities in a Swirl Burner Studied by Phase-Locked Planar Laser-Induced Fluorescence
,”
Combust. Sci. Technol.
,
175
(
4
), pp.
721
741
.10.1080/00102200302390
22.
Pasquier
,
N.
,
Lecordier
,
B.
,
Trinite
,
M.
, and
Cessou
,
A.
,
2007
, “
An Experimental Investigation of Flame Propagation Through a Turbulent Stratified Mixture
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1567
1574
.10.1016/j.proci.2006.07.118
23.
Nogenmyr
,
K.
,
Petersson
,
P.
, and
Bai
,
X.
,
2007
, “
Large Eddy Simulation and Experiments of Stratified Lean Premixed Methane/Air Turbulent Flames
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1467
1475
.10.1016/j.proci.2006.08.038
24.
Haworth
,
D.
,
Blint
,
R.
,
Cuenot
,
B.
, and
Poinsot
,
T.
,
2000
, “
Numerical Simulation of Turbulent Propane–Air Combustion With Nonhomogeneous Reactants
,”
Combust. Flame
,
121
(
3
), pp.
395
417
.10.1016/S0010-2180(99)00148-0
25.
Robin
,
V.
,
Mura
,
A.
, and
Champion
,
M.
,
2008
, “
Experimental and Numerical Analysis of Stratified Turbulent V-Shaped Flames
,”
Combust. Flame
,
153
(
1
), pp.
288
315
.10.1016/j.combustflame.2007.10.008
26.
Marzouk
,
Y.
,
Ghoniem
,
A.
, and
Najm
,
H.
,
2000
, “
Dynamic Response of Strained Premixed Flames to Equivalence Ratio Gradients
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
1859
1866
.10.1016/S0082-0784(00)80589-5
27.
Galizzi
,
C.
, and
Escudié
,
D.
,
2010
, “
Experimental Analysis of an Oblique Turbulent Flame Front Propagating in a Stratified Flow
,”
Combust. Flame
,
157
(
12
), pp.
2277
2285
.10.1016/j.combustflame.2010.07.008
28.
Kang
,
T.
, and
Kyritsis
,
D.
,
2009
, “
Phenomenology of Methane Flame Propagation Into Compositionally Stratified, Gradually Richer Mixtures
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
979
985
.10.1016/j.proci.2008.06.007
29.
Truffin
,
K.
, and
Poinsot
,
T.
,
2005
, “
Comparison and Extension of Methods for Acoustic Identification of Burners
,”
Combust. Flame
,
142
(
4
), pp.
388
400
.10.1016/j.combustflame.2005.04.001
30.
Sweeney
,
M. S.
,
Hochgreb
,
S.
,
Dunn
,
M. J.
, and
Barlow
,
R. S.
,
2012
, “
The Structure of Turbulent Stratified and Premixed Methane/Air Flames I: Non-Swirling Flows
,”
Combust. Flame
,
159
(
9
), pp.
2896
2911
.10.1016/j.combustflame.2012.06.001
31.
Sweeney
,
M. S.
,
Hochgreb
,
S.
,
Dunn
,
M. J.
, and
Barlow
,
R. S.
,
2012
, “
The Structure of Turbulent Stratified and Premixed Methane/Air Flames II: Swirling Flows
,”
Combust. Flame
,
159
(
9
), pp.
2912
2929
.10.1016/j.combustflame.2012.05.014
32.
Kim
,
K.
, and
Hochgreb
,
S.
,
2011
, “
The Nonlinear Heat Release Response of Stratified Lean-Premixed Flames to Acoustic Velocity Oscillations
,”
Combust. Flame
,
158
(
12
), pp.
2482
2499
.10.1016/j.combustflame.2011.05.016
33.
Han
,
Z.
, and
Hochgreb
,
S.
,
2013
, “
The Forced Heat Release Response of Stratified Flames to Acoustic Velocity Fluctuations
,”
European Combustion Meeting 2013
, Lund, Sweden, June 26–28.
34.
Kim
,
K. T.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2011
, “
Reconstruction of Heat Release Response of Partially Premixed Flames
,”
Combust. Sci. Technol.
,
183
(
2
), pp.
122
137
.10.1080/00102202.2010.503205
35.
Hurle
,
I.
,
Price
,
R.
,
Sugden
,
T.
, and
Thomas
,
A.
,
1968
, “
Sound Emission From Open Turbulent Premixed Flames
,”
Proc. R. Soc. London, Ser. A
,
303
(
1475
), pp.
409
427
.10.1098/rspa.1968.0058
36.
Lee
,
J.
, and
Santavicca
,
D.
,
2003
, “
Experimental Diagnostics for the Study of Combustion Instabilities in Lean Premixed Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
735
750
.10.2514/2.6191
37.
Hardalupas
,
Y.
, and
Selbach
,
A.
,
2002
, “
Imposed Oscillations and Non-Premixed Flames
,”
Prog. Energy Combust. Sci.
,
28
(
1
), pp.
75
104
.10.1016/S0360-1285(01)00010-7
38.
Higgins
,
B.
,
McQuay
,
M.
,
Lacas
,
F.
, and
Candel
,
S.
,
2001
, “
An Experimental Study on the Effect of Pressure and Strain Rate on CH Chemiluminescence of Premixed Fuel-Lean Methane/Air Flames
,”
Fuel
,
80
(
11
), pp.
1583
1591
.10.1016/S0016-2361(01)00040-0
39.
Higgins
,
B.
,
McQuay
,
M.
, and
Lacas
,
F.
,
2001
, “
Systematic Measurements of OH Chemiluminescence for Fuel-Lean, High-Pressure, Premixed, Laminar Flames
,”
Fuel
,
80
(
1
), pp.
67
74
.10.1016/S0016-2361(00)00069-7
40.
Guethe
,
F.
,
Guyot
,
D.
,
Singla
,
G.
,
Noiray
,
N.
, and
Schuermans
,
B.
,
2012
, “
Chemiluminescence as Diagnostic Tool in the Development of Gas Turbines
,”
Appl. Phys. B
,
107
(
3
), pp.
619
636
.10.1007/s00340-012-4984-y
41.
Bobusch
,
B. C.
,
Ćosić
,
B.
,
Moeck
,
J. P.
, and
Paschereit
,
C. O.
,
2013
, “
Optical Measurement of Local and Global Transfer Functions for Equivalence Ratio Fluctuations in a Turbulent Swirl Flame
,”
ASME J. Eng. Gas Turbines Power
,
136
(2), p. 021506.10.1115/1.4025375
42.
Dasch
,
C. J.
,
1992
, “
One-Dimensional Tomography: A Comparison of Abel, Onion-Peeling, and Filtered Backprojection Methods
,”
Appl. Opt.
,
31
(
8
), pp.
1146
1152
.10.1364/AO.31.001146
43.
Lieuwen
,
T.
,
2005
, “
Nonlinear Kinematic Response of Premixed Flames to Harmonic Velocity Disturbances
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
1725
1732
.10.1016/j.proci.2004.07.020
44.
Kim
,
K. T.
,
Lee
,
J. G.
,
Lee
,
H. J.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2010
, “
Characterization of Forced Flame Response of Swirl-Stabilized Turbulent Lean-Premixed Flames in a Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
041502
.10.1115/1.3204532
45.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2011
, “
Nonlinear Combustion Instability Analysis Based on the Flame Describing Function Applied to Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
158
(
10
), pp.
1980
1991
.10.1016/j.combustflame.2011.02.012
46.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2010
, “
Swirling Flame Instability Analysis Based on the Flame Describing Function Methodology
,”
ASME
Paper No. GT2010-22294. 10.1115/GT2010-22294
You do not currently have access to this content.