A new skeletal chemical kinetic mechanism of ethanol reference fuel (including ethanol, iso-octane, n-heptane, and toluene combustion mechanisms) consisting of 62 species and 194 reactions is developed for oxidation and combustion of gasoline blend surrogate fuels. The skeletal ethanol chemical kinetic mechanism is added to the toluene reference fuel (TRF) mechanism (including iso-octane, n-heptane, and toluene combustion mechanisms) using reaction paths and semidecoupling model. The ignition delay and laminar flame speed of the new combustion mechanism were modeled by using several fuel surrogates at different pressures, temperatures, and equivalence ratios. The skeletal chemical kinetic mechanism ignition delay and laminar flame speed are validated by comparison to the available experimental data of the shock tube and plate burner. The results indicate that satisfactory agreement between predictions and experimental measurements are achieved.

References

References
1.
Liu
,
Y. D.
,
Jia
,
M.
,
Xie
,
M. Z.
, and
Pang
,
B.
,
2013
, “
Development of a New Skeletal Chemical Kinetic Model of Toluene Reference Fuel With Application to Gasoline Surrogate Fuels for Computational Fluid Dynamics Engine Simulation
,”
Energy and Fuels
,
27
(
8
), pp.
4899
4909
.10.1021/ef4009955
2.
Mehl
,
M.
,
Chen
,
J.
,
Pitz
,
W.
,
Sarathy
,
S.
, and
Westbrook
,
C.
,
2011
, “
An Approach for Formulating Surrogates for Gasoline With Application Toward a Reduced Surrogate Mechanism for CFD Engine Modeling
,”
Energy Fuels
,
25
(
11
), pp.
5215
5223
.10.1021/ef201099y
3.
Pitz
,
W.
,
Cernansky
,
N.
,
Dryer
,
F.
,
Egolfopoulos
,
F.
,
Farrell
,
J.
,
Friend
,
D.
, and
Pitsch
,
H.
,
2007
, “Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels,”
SAE
Technical Paper 2007-01-0175.10.4271/2007-01-0175
4.
Kukkadapu
,
G.
,
Kumar
,
K.
,
Sung
,
C. J.
,
Mehl
,
M.
, and
Pitz
,
W. J.
,
2013
, “
Autoignition of Gasoline and Its Surrogates in a Rapid Compression Machine
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
345
352
.10.1016/j.proci.2012.06.135
5.
Physical and Life Sciences Directorate, 2012 "Gasoline Surrogate," Lawrence Livermore National Laboratory, Livermore, CA, available at: https://www-pls.llnl.gov/?url=science_and_technology-chemistry-combustion-gasoline_surrogate
6.
Marinov
,
N. M.
,
1999
, “
A Detailed Chemical Kinetic Model for High Temperature Ethanol Oxidation
,”
Int. J. Chem. Kinet.
,
31
(
3
), pp.
183
220
.10.1002/(SICI)1097-4601(1999)31:3<183::AID-KIN3>3.0.CO;2-X
7.
Li
,
J.
,
Kazakov
,
A.
, and
Dryer
,
F. L.
,
2005
, “Chemical Kinetics of Ethanol Oxidation,”
2nd European Combustion Meeting, Louvain-la-Neuve
,
Belgium
, Apr. 3–6.
8.
Li
,
J.
,
Kazakov
,
A.
, and
Dryer
,
F. L. J.
,
2004
, “
Experimental and Numerical Studies of Ethanol Decomposition Reactions
,”
Phys. Chem. A
,
108
(
38
), pp.
7671
7680
.10.1021/jp0480302
9.
Liu
,
Y. D.
,
Jia
,
M.
,
Xie
,
M. Z.
, and
Pang
,
B.
,
2012
, “
Enhancement on a Skeletal Kinetic Model for Primary Reference Fuel Oxidation by Using a Semidecoupling Methodology
,”
Energy Fuels
,
26
(
12
), pp.
7069
7083
.10.1021/ef301242b
10.
Samimi Abianeh
,
O.
, and
Chen
,
C. P.
,
2012
, “
A Discrete Multicomponent Fuel Evaporation Model With Liquid Turbulence Effects
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6897
6907
.10.1016/j.ijheatmasstransfer.2012.07.003
11.
You
,
X. Q.
,
Egolfopoulos
,
F. N.
, and
Wang
,
H.
,
2009
, “
Detailed and Simplified Kinetic Models of n-Dodecane Oxidation: The Role of Fuel Cracking in Aliphatic Hydrocarbon Combustion
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
403
410
.10.1016/j.proci.2008.06.041
12.
Davis
,
S. G.
, and
Law
,
C. K.
,
1998
, “Laminar Flame Speeds and Oxidation Kinetics of Iso-Octane-Air and n-Heptane-Air Flames,”
Symp. (Int.) Combust.
,
27
(1), pp.
521
527
.10.1016/S0082-0784(98)80442-6
13.
Raju
,
M.
,
Wang
,
M.
,
Senecal
,
P. K.
,
Som
,
S.
, and
Longman
,
D. E.
,
2012
, “A Reduced Diesel Surrogate Mechanism for Compression Ignition Engine Applications,”
ASME
Paper No. ICEF2012-92045.10.1115/ICEF2012-92045
14.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2012
, “
CONVERGE (Version 1.4.1) Manual
,” Convergent Science, Inc., Middleton, WI.
15.
CD-adapco
, “DARS,” CD-adapco, Northville, MI 48167.
16.
Jensen
,
J. T.
,
Haugen
,
N. E. L.
, and
Babkovskaia
,
N.
, 2011, “
Calculation of the Minimum Ignition Energy Based on the Ignition Delay Time
,” Combust. Flame (submitted).
17.
Davidson
,
D. F.
,
Gauthier
,
B. M.
, and
Hanson
,
R. K.
,
2005
, “
Shock Tube Ignition Measurements of Iso-Octane/Air and Toluene/Air at High Pressures
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1175
1182
.10.1016/j.proci.2004.08.004
18.
Cancino
,
L. R.
,
Fikri
,
M.
,
Oliveira
,
A. M. M.
, and
Schulz
,
C.
,
2009
, “Computational Fluid Dynamic Simulation of a Non-Reactive Propagating Shock Wave in a Shock Tube,”
27th International Symposium on Shock Waves
,
St. Petersburg, Russia
, July 19–24, pp.
445
.
19.
Shen
,
H. S.
,
Vanderover
,
J.
, and
Oehlschlaeger
,
M. A.
,
2009
, “
A Shock Tube Study of the Auto-Ignition of Toluene/Air Mixtures at High Pressures
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
165
172
.10.1016/j.proci.2008.05.004
20.
Fieweger
,
K.
,
Blumenthal
,
R.
, and
Adomeit
,
G.
,
1997
, “
Self-Ignition of S.I. Engine Model Fuels: A Shock Tube Investigation at High Pressure
,”
Combust. Flame
,
109
(
4
), pp.
599
619
.10.1016/S0010-2180(97)00049-7
21.
Gauthier
,
B. M.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2004
, “
Shock Tube Determination of Ignition Delay Times in Full-Blend and Surrogate Fuel Mixtures
,”
Combust. Flame
,
139
(
4
), pp.
300
311
.10.1016/j.combustflame.2004.08.015
22.
Fikri
,
M.
,
Herzler
,
J.
,
Starke
,
R.
,
Schulz
,
C.
,
Roth
,
P.
, and
Kalghatgi
,
G. T.
,
2008
, “
Autoignition of Gasoline Surrogates Mixtures at Intermediate Temperatures and High Pressures
,”
Combust. Flame
,
152
(
1–2
), pp.
276
281
.10.1016/j.combustflame.2007.07.010
23.
Dirrenberger
,
P.
,
Glaude
,
P. A.
,
Bounaceur
,
R.
,
Le Gall
,
H.
,
Pires da Cruz
,
A.
,
Konnov
,
A. A.
, and
Battin-Leclerc
,
F.
,
2014
, “
Laminar Burning Velocity of Gasolines With Addition of Ethanol
,”
Fuel
,
115
, pp.
162
169
.10.1016/j.fuel.2013.07.015
24.
Bradley
,
D.
,
Hicks
,
R. A.
,
Lawes
,
M.
,
Sheppard
,
C. G. W.
, and
Woolley
,
R.
,
1998
, “
The Measurement of Laminar Burning Velocities and Markstein Numbers for Iso-OctaneAir and Iso-Octanen-Heptane Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb
,”
Combust. Flame
,
115
(
1–2
), pp.
126
144
.10.1016/S0010-2180(97)00349-0
25.
Kumar
,
K.
,
Freeh
,
J. E.
,
Sung
,
C. J.
, and
Huang
,
Y. J.
,
2007
, “
Laminar Flame Speeds of Preheated Iso-Octane/O2/N2 and n-Heptane/O2/N2 Mixtures
,”
Propul. Power
,
23
(
2
), pp.
428
436
.10.2514/1.24391
26.
Kelley
,
A. P.
,
Liu
,
W.
,
Xin
,
Y. X.
,
Smallbone
,
A. J.
, and
Law
,
C. K.
,
2011
, “
Laminar Flame Speeds, Non-Premixed Stagnation Ignition, and Reduced Mechanisms in the Oxidation of Iso-Octane
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
501
508
.10.1016/j.proci.2010.05.058
27.
Halter
,
F.
,
Tahtouh
,
T.
, and
Mounaïm-Rousselle
,
C.
,
2010
, “
Nonlinear Effects of Stretch on the Flame Front Propagation
,”
Combust. Flame
,
157
(
10
), pp.
1825
1832
.10.1016/j.combustflame.2010.05.013
28.
Broustail
,
G.
,
Seers
,
P.
,
Halter
,
F.
,
Moréac
,
G.
, and
Mounaim-Rousselle
,
C.
,
2011
, “
Experimental Determination of Laminar Burning Velocity for Butanol and Ethanol Iso-Octane Blends
,”
Fuel
,
90
(
1
), pp.
1
6
.10.1016/j.fuel.2010.09.021
29.
Zhou
,
J. X.
,
Cordier
,
M.
,
Mounaïm-Rousselle
,
C.
, and
Foucher
,
F.
,
2011
, “
Experimental Estimate of the Laminar Burning Velocity of Iso-Octane in Oxygen-Enriched and CO2-Diluted Air
,”
Combust. Flame
,
158
(
12
), pp.
2375
2383
.10.1016/j.combustflame.2011.05.002
30.
Gülder
,
O. L.
,
1982
, “
Laminar Burning Velocities of Methanol, Ethanol and Isooctane-Air Mixtures
,”
Symp. Combust.
,
19
(
1
), pp.
275
281
.10.1016/S0082-0784(82)80198-7
31.
Egolfopoulos
,
F. N.
,
Du
,
D. X.
, and
Law
,
C. K.
,
1992
, “
A Study on Ethanol Oxidation Kinetics in Laminar Premixed Flames, Flow Reactors, and Shock Tubes
,”
Symp. Combust.
,
24
(
1
), pp.
833
841
.10.1016/S0082-0784(06)80101-3
32.
van Lipzig
,
J. P. J.
,
Nilsson
,
E. J. K.
,
de Goey
,
L. P. H.
, and
Konnov
,
A. A.
,
2011
, “
Laminar Burning Velocities of n-Heptane, Iso-Octane, Ethanol and Their Binary and Tertiary Mixtures
,”
Fuel
,
90
(
8
), pp.
2773
2781
.10.1016/j.fuel.2011.04.029
33.
Jerzembeck
,
S.
,
Peters
,
N.
,
Pepiot-Desjardins
,
P.
, and
Pitsch
,
H.
,
2009
, “
Laminar Burning Velocities at High Pressure for Primary Reference Fuels and Gasoline: Experimental and Numerical Investigation
,”
Combust. Flame
,
156
(
2
), pp.
292
301
.10.1016/j.combustflame.2008.11.009
You do not currently have access to this content.