Short annular diffusers with negative wall angles were evaluated numerically and experimentally with up to 40 deg inlet swirl at an inlet Reynolds number of Ret ≈ 1.4 × 105 and Mach number of Mt ≈ 0.16. The 80% experimental effectiveness of the 1.61 and 1.91 area ratio (AR) diffusers with 0–20 deg inlet swirl were on par with unswirled maximums reported in literature and computational fluid dynamics (CFD) predicted reasonable outlet axial velocity profiles and wall pressure distributions. The AR = 2.73 diffuser's effectiveness without swirl was 13% below the maximum for the given AR and larger discrepancies occurred in the CFD results due to the incorrect prediction of the recirculation zone strength. Preference was given to the realizable k–ε model on coarse grids with wall functions that predicted performance of all cases with at least 20 deg inlet swirl to within 20%.

References

References
1.
Sovran
,
G.
, and
Klomp
,
E. D.
,
1967
, “
Experimentally Determined Optimum Geometries for Rectilinear Diffusers With Rectangular, Conical, or Annular Cross-Section
,”
Fluid Dynamics of Internal Flow
,
Elsevier
, New York, pp.
270
319
.
2.
Johnston
,
I. H.
,
1953
, “
The Effect of Inlet Conditions on the Flow in Annular Diffusers
,” National Gas Turbine Establishment, Fleet, UK, Memorandum No. M.167.
3.
Stevens
,
S. J.
,
1967
, “
The Performance of Annular Diffusers
,”
Proc. Inst. Mech. Eng.
,
182
(4), pp. 58–70.10.1243/PIME_CONF_1967_182_130_02
4.
Howard
,
J.
,
Thornton-Trump
,
A.
, and
Henseler
,
H.
,
1967
, “
Performance and Flow Regimes for Annular Diffusers
,”
ASME
Paper No. 67-WA/FE-21.
5.
Japikse
,
D.
, and
Baines
,
N. C.
,
1998
,
Diffuser Design Technology
,
Concepts ETI
, White River Junction, VT.
6.
Mallett
,
W. E.
, and
Harp
,
J. L.
, Jr.
,
1954
, “
Performance Characteristics of Several Short Annular Diffusers for Turbojet Engine Afterburners
,” National Advisory Committe for Aeronautics, Washington, DC, Report No. NACA RM E54B09.
7.
Wood
,
C. C.
, and
Higginbotham
,
J. T.
,
1954
, “
Effects of Diffuser and Center-Body Length on the Performance of Annular Diffusers With Constant Diameter Outer Walls and With Vortex Generator Flow Controls
,” National Advisory Committe for Aeronautics, Washington, DC, Report No. NACA RM L54G21.
8.
Eckert
,
W. T.
,
Johnston
,
J. P.
,
Simons
,
T. D.
,
Mort
,
K. W.
, and
Page
,
V. R.
,
1980
, “
An Experimental Investigation of Two Large Annular Diffusers With Swirling and Distorted Flow
,” Ames Research Center, Mountain View, CA, Technical Report No. 79-40, NASA Technical Paper No. 1628.
9.
Adkins
,
R.
,
Jacobsen
,
O.
, and
Chevalier
,
P.
,
1986
, “
A Preliminary Study of Annular Diffusers With Constant Diameter Outer Walls (Suitable for Turbine Exits)
,”
Int. J. Turbo Jet Eng.
,
3
(2–3), pp.
181
190
.
10.
Thayer
,
E. B.
,
1971
,
Evaluation of Curved-Wall Annular Diffusers
, ASME Paper No. 71-WA.
11.
Jirásek
,
A.
,
2006
, “
Design of Vortex Generator Flow Control in Inlets
,”
J. Aircr.
,
43
(
6
), pp.
1886
1892
.10.2514/1.21364
12.
Wendt
,
B. J.
,
2004
, “
Parametric Study of Vortices Shed From Airfoil Vortex Generators
,”
AIAA J.
,
42
(
11
), pp.
2185
2195
.10.2514/1.3672
13.
Birk
,
A. M.
, and
Davis
,
W. R.
,
1989
, “
Suppressing the Infra-Red Signatures of Marine Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
111
(
1
), pp.
123
129
.10.1115/1.3240210
14.
Bosioc
,
A.
,
Tanasa
,
C.
,
Muntean
,
S.
, and
Susan-Resiga
,
R.
,
2010
, “
Unsteady Pressure Measurements and Numerical Investigation of the Jet Control Method in a Conical Diffuser With Swirling Flow
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
12
(
1
), p.
012017
.10.1088/1755-1315/12/1/012017
15.
Stevens
,
S. J.
, and
Fry
,
P.
,
1973
, “
Measurements of the Boundary-Layer Growth in Annular Diffusers
,”
J. Aircr.
,
10
(
2
), pp.
73
80
.10.2514/3.60199
16.
Japikse
,
D.
, and
Pampreen
,
R.
,
1979
, “
Annular Diffuser Performance for an Automotive Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
101
(3), pp.
358
371
.10.1115/1.3446584
17.
Senoo
,
Y.
, and
Kawaguchi
,
N.
,
1987
, “
Pressure Recovery of Collectors With Annular Curved Diffusers
,”
Int J. Turbo Jet Eng.
,
4
(3–4), pp.
181
190
.
18.
Dominy
,
R. G.
,
Kirkham
,
D. A.
, and
Smith
,
A. D.
,
1998
, “
Flow Development Through Interturbine Diffusers
,”
ASME J. Turbomach.
,
120
(2), pp.
298
304
.10.1115/1.2841406
19.
Lohmann
,
R. P.
,
Markowski
,
S. J.
, and
Brookman
,
E. T.
,
1979
, “
Swirling Flow Through Annular Diffusers With Conical Walls
,”
ASME J. Fluids Eng.
,
101
(2), pp.
224
229
.10.1115/1.3448939
20.
Dovzhik
,
S. A.
, and
Kartavenko
,
V. N.
,
1975
, “
Measurement of the Effect of Flow Swirl on the Efficiency of Annular Ducts and Exhaust Nozzles of Axial Turbomachines
,”
Fluid Mech. Sov. Res.
,
4
(
4
), pp.
156
172
.
21.
Fleige
,
H.
,
Riess
,
W.
, and
Seume
,
J.
,
2002
,
Swirl and Tip Leakage Flow Interaction With Struts in Axial Diffusers
,
ASME
Paper No. GT-2002-30491.10.1115/GT-2002-30491
22.
Coladipietro
,
R.
,
Schneider
,
J. H.
, and
Sridhar
,
K.
,
1975
, “
Effects of Inlet Flow Conditions on the Performance of Equiangular Annular Diffusers
,”
Trans. CSME
,
3
(
2
), pp.
75
82
.
23.
Klomp
,
E. D.
,
1997
, “
Performance of Straight-Walled Annular Diffusers With Swirling Flow
,”
Aeronaut. J.
,
101
(
1010
), pp.
467
480
.
24.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flows
,
ABACUS Press
, Tunbridge Wells, Kent, UK.
25.
Lilley
,
D. G.
,
1999
, “
Annular Vane Swirler Performance
,”
J. Propul. Power
,
15
(
2
), pp.
248
252
.10.2514/2.5419
26.
Cerantola
,
D. J.
, and
Birk
,
A. M.
,
2012
, “
Numerically Optimizing an Annular Diffuser Using a Genetic Algorithm With Three Objectives
,”
ASME
Paper No. GT2012-68205.10.1115/GT2012-68205
27.
Cerantola
,
D. J.
,
2014
, “
Evaluation of Swirl and Tabs in Short Annular Diffusers
,” Ph.D. thesis, Queen's University, Kingston, ON, Canada.
28.
Adams
,
D. W.
,
2013
, “
Improvements on Single Point Incremental Forming Through Electrically Assisted Forming, Contact Area Prediction and Tool Development
,” Ph.D. thesis, Queen's University, Kingston, ON, Canada.
29.
Gallington
,
R. W.
,
1980
, “
Measurement of Very Large Flow Angles With Non-Nulling Seven-Hole Probes
,” Aeronautics Digest, Spring-Summer, pp.
60
88
, Paper No. USAFA-TR-80-17.
30.
Crawford
,
J.
, and
Birk
,
A. M.
,
2013
, “
Improvements to Common Data Reduction and Calibration Methods for Seven Hole Probes
,”
ASME J. Fluids Eng.
,
135
(3), p.
031206
.10.1115/1.4023649
31.
Crawford
,
J.
, and
Birk
,
A. M.
,
2013
, “
Influence of Tip Shape on Reynolds Number Sensitivity for a Seven Hole Pressure Probe
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
091602
.10.1115/1.4024950
32.
ANSYS Inc.,
2013
, ANSYS® Release 15.0: ANSYS FLUENT User's Guide, ANSYS Inc., Canonsburg, PA.
33.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
34.
Menter
,
F
.,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
35.
Roache
,
P. J.
,
1998
, “
Verification of Codes and Calculations
,”
AIAA J.
,
36
(
5
), pp.
696
702
.10.2514/2.457
36.
Freitas
,
C.
,
Ghia
,
U.
,
Celik
,
I.
,
Roache
,
P.
, and
Raad
,
P.
,
2003
, “
ASME's Quest to Quantify Numerical Uncertainty
,”
AIAA
Paper No. 2003–627.10.2514/6.2003–627
37.
White
,
F. M.
,
2006
,
Viscous Fluid Flow
,
3rd ed.
,
McGraw-Hill
, New York.
You do not currently have access to this content.