It is well known that parametric vibrations may appear during the rotation of a rotor with a cracked shaft. The vibrations occur due to periodic stiffness changes being the result of the crack breathing. A parametrically excited system may exhibit parametric resonances and antiresonances affecting the stability of the system. In most cases the destabilizing effect due to parametric resonances is studied. Antiresonant cases seem to be uninteresting. However, the antiresonances have a unique property of introducing additional artificial damping to the system, thus improving its stability and reducing the vibration amplitude. Apart from different control applications, this stabilizing effect may be interesting for its probable ability to indicate the shaft crack. The possible application of the additional damping introduced by parametric excitation for the shaft crack detection is analyzed in the present paper. The approach is demonstrated with a mathematical model of a rotor with a cracked shaft. The stability analysis of the rotor is performed analytically by employing the averaging method. Stability boundaries for different frequencies of the parametric excitation and for different crack depths are derived. The results of this analysis are checked numerically by means of the Floquet's theory. Next, possible applications of the parametric excitation for the shaft crack detection are validated numerically.

References

References
1.
Darpe
,
A. K.
,
Gupta
,
K.
, and
Chawla
,
A.
,
2004
, “
Coupled Bending, Longitudinal and Torsional Vibrations of a Cracked Rotor
,”
J. Sound Vib.
,
269
(
1–2
), pp.
33
60
.10.1016/S0022-460X(03)00003-8
2.
Gasch
,
R. A.
,
1976
, “
Dynamic Behavior of a Simple Rotor With a Cross Sectional Crack
,”
IMechE International Conference on Vibrations in Rotating Machineries (IMechE '76)
, Cambridge, UK, Sept. 15–17, Paper No.. C178/76, pp.
123
128
.
3.
Kulesza
,
Z.
, and
Sawicki
,
J. T.
,
2012
, “
Rigid Finite Element Model of a Cracked Rotor
,”
J. Sound Vib.
,
331
(
18
), pp.
4145
4169
.10.1016/j.jsv.2012.04.014
4.
Mayes
,
I. W.
, and
Davies
,
W. G. R.
,
1984
, “
Analysis of the Response of a Multi-Rotor-Bearing System Containing a Transverse Crack in a Rotor
,”
ASME J. Vib. Acoust.
,
106
(
1
), pp.
139
145
.10.1115/1.3269142
5.
Sawicki
,
J. T.
,
Storozhev
,
D. L.
, and
Lekki
,
J. D.
,
2011
, “
Exploration of NDE Properties of AMB Supported Rotors for Structural Damage Detection
,”
ASME J. Eng. Gas Turbines Power
,
133
(
10
), p.
102501
.10.1115/1.4002908
6.
Al-Shudeifat
,
M. A.
, and
Butcher
,
E. A.
,
2011
, “
New Breathing Functions for the Transverse Breathing Crack of the Cracked Rotor System: Approach for Critical and Subcritical Harmonic Analysis
,”
J. Sound Vib.
,
330
(
3
), pp.
526
544
.10.1016/j.jsv.2010.08.022
7.
Kulesza
,
Z.
, and
Sawicki
,
J. T.
,
2013
, “
New Finite Element Modeling Approach of a Propagating Shaft Crack
,”
ASME J. Appl. Mech.
,
80
(
2
), p.
021025
.10.1115/1.4007787
8.
Sinou
,
J. J.
, and
Lees
,
A. W.
,
2005
, “
The Influence of Cracks in Rotating Shafts
,”
J. Sound Vib.
,
285
(
4–5
), pp.
1015
1037
.10.1016/j.jsv.2004.09.008
9.
Meng
,
G.
, and
Gasch
,
R.
,
2000
, “
Stability and Stability Degree of a Cracked Flexible Rotor Supported on Journal Bearings
,”
ASME J. Vib. Acoust.
,
122
(
2
), pp.
116
125
.10.1115/1.568448
10.
Sawicki
,
J. T.
,
Friswell
,
M. I.
,
Kulesza
,
Z.
,
Wroblewski
,
A.
, and
Lekki
,
J. D.
,
2011
, “
Detecting Cracked Rotors Using Auxiliary Harmonic Excitation
,”
J. Sound Vib.
,
330
(
7
), pp.
1365
1381
.10.1016/j.jsv.2010.10.006
11.
Nelson
,
H. D.
, and
McVaugh
,
J. M.
,
1976
, “
The Dynamics of Rotor Bearing Systems Using Finite Elements
,”
ASME J. Eng. Ind.
,
98
(
2
), pp.
593
600
.10.1115/1.3438942
12.
Dimarogonas
,
A. D.
, and
Paipetis
,
S. A.
,
1983
,
Analytical Methods in Rotor Dynamics
,
Applied Science Publishers
,
London
.
13.
Ostachowicz
,
W. M.
, and
Krawczuk
,
M.
,
1992
, “
Coupled Torsional and Bending Vibrations of a Rotor With an Open Crack
,”
Arch. Appl. Mech.
,
62
(
3
), pp.
191
201
.10.1007/BF00787959
14.
Dai
,
L.
, and
Chen
,
C.
,
2007
, “
Dynamic Stability Analysis of a Cracked Nonlinear Rotor System Subjected to Periodic Excitations in Machining
,”
J. Vib. Control
,
13
(
5
), pp.
537
556
.10.1177/1077546307074242
15.
Fu
,
Y. M.
, and
Zheng
,
Y. F.
,
2002
, “
Analysis of Non-Linear Dynamic Stability for a Rotating Shaft-Disk With a Transverse Crack
,”
J. Sound Vib.
,
257
(
4
), pp.
713
731
.10.1006/jsvi.2002.5040
16.
Huang
,
S. C.
,
Huang
,
Y. M.
, and
Shieh
,
S. M.
,
1993
, “
Vibration and Stability of a Rotating Shaft Containing a Transverse Crack
,”
J. Sound Vib.
,
162
(
3
), pp.
387
401
.10.1006/jsvi.1993.1129
17.
Patel
,
T. H.
, and
Darpe
,
A. K.
,
2008
, “
Influence of Crack Breathing Model on Nonlinear Dynamics of a Cracked Rotor
,”
J. Sound Vib.
,
311
(
3–5
), pp.
953
972
.10.1016/j.jsv.2007.09.033
18.
Wu
,
X.
,
Sawicki
,
J. T.
,
Friswell
,
M. I.
, and
Baaklini
,
G. Y.
,
2005
, “
Finite Element Analysis of Coupled Lateral and Torsional Vibrations of a Rotor With Multiple Cracks
,”
ASME
Paper No. GT2005-68839. 10.1115/GT2005-68839
19.
Yiming
,
F.
, and
Yufang
,
Z.
,
2003
, “
Analysis of the Chaotic Motion for a Rotor System With a Transverse Crack
,”
Acta Mech. Solida Sin.
,
16
(
1
), pp.
74
80
.
20.
Bachschmid
,
N.
,
Pennacchi
,
P.
,
Tanzi
,
E.
, and
Vania
,
A.
,
2000
, “
Identification of Transverse Crack Position and Depth in Rotor Systems
,”
Meccanica
,
35
(
6
), pp.
563
582
.10.1023/A:1010562205385
21.
Sinou
,
J. J.
,
2008
, “
Detection of Cracks in Rotor Based on the 2X and 3X Super-Harmonic Frequency Components and the Crack-Unbalance Interactions
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
(9), pp.
2024
2040
.10.1016/j.cnsns.2007.04.008
22.
Kulesza
,
Z.
, and
Sawicki
,
J. T.
,
2012
, “
Controlled Deflection Approach for Rotor Crack Detection
,”
ASME J. Eng. Gas Turbines Power
,
134
(
9
), p.
092502
.10.1115/1.4006990
23.
Ishida
,
Y.
, and
Inoue
,
T.
,
2006
, “
Detection of a Rotor Crack Using a Harmonic Excitation and Nonlinear Vibration Analysis
,”
ASME J. Vib. Acoust.
,
128
(
6
), pp.
741
749
.10.1115/1.2346693
24.
Kulesza
,
Z.
, and
Sawicki
,
J. T.
,
2011
, “
Auxiliary State Variables for Rotor Crack Detection
,”
J. Vib. Control
,
17
(
6
), pp.
857
872
.10.1177/1077546309360050
25.
Kulesza
,
Z.
,
Sawicki
,
J. T.
, and
Gyekenyesi
,
A. L.
,
2012
, “
Robust Fault Detection Filter Using Linear Matrix Inequalities' Approach for Shaft Crack Diagnosis
,”
J. Vib. Control
,
19
(
9
), pp.
1421
1440
.10.1177/1077546312447838
26.
Loparo
,
K. A.
,
Adams
,
M. L.
,
Lin
,
W.
,
Abdel-Magied
,
M. F.
, and
Afshari
,
N.
,
2000
, “
Fault Detection and Diagnosis of Rotating Machinery
,”
IEEE Trans. Ind. Electron.
,
47
(
5
), pp.
1005
1014
.10.1109/41.873208
27.
Söffker
,
D.
,
Bajkowski
,
J.
, and
Müller
,
P. C.
,
1993
, “
Detection of Cracks in Turborotors—A New Observer-Based Method
,”
ASME J. Dyn. Syst., Meas. Control
,
115
(
3
), pp.
518
524
.10.1115/1.2899130
28.
He
,
Y.
,
Guo
,
D.
, and
Chu
,
F.
,
2001
, “
Using Genetic Algorithms to Detect and Configure Shaft Crack for Rotor-Bearing System
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
45
), pp.
5895
5906
.10.1016/S0045-7825(01)00203-1
29.
Xiang
,
J.
,
Zhong
,
Y.
,
Chen
,
X.
, and
He
,
Z.
,
2008
, “
Crack Detection in a Shaft by Combination of Wavelet-Based Elements and Genetic Algorithm
,”
Int. J. Solids Struct.
,
45
(
17
), pp.
4782
4795
.10.1016/j.ijsolstr.2008.04.014
30.
Litak
,
G.
, and
Sawicki
,
J. T.
,
2009
, “
Intermittent Behaviour of a Cracked Rotor in the Resonance Region
,”
Chaos, Solitons Fractals
,
42
(3), pp.
1495
1501
.10.1016/j.chaos.2009.03.050
31.
Guo
,
D.
, and
Peng
,
Z. K.
,
2007
, “
Vibration Analysis of a Cracked Rotor Using Hilbert–Huang Transform
,”
Mech. Syst. Signal Process.
,
21
(
8
), pp.
3030
3041
.10.1016/j.ymssp.2007.05.004
32.
Ballo
,
I.
,
1998
, “
Non-Linear Effects of Vibration of a Continuous Transverse Cracked Slender Shaft
,”
J. Sound Vib.
,
217
(
2
), pp.
321
333
.10.1006/jsvi.1998.1809
33.
Sinou
,
J. J.
,
2007
, “
Effects of a Crack on the Stability of a Non-Linear Rotor System
,”
Int. J. Non-Linear Mech.
,
42
(
7
), pp.
959
972
.10.1016/j.ijnonlinmec.2007.04.002
34.
Didier
,
J.
,
Sinou
,
J. J.
, and
Faverion
,
B.
,
2012
, “
Study of the Non-Linear Dynamic Response of a Rotor System With Faults and Uncertainties
,”
J. Sound Vib.
,
331
(
3
), pp.
671
703
.10.1016/j.jsv.2011.09.001
35.
Plaut
,
R. H.
,
1995
, “
Parametric, External and Combination Resonances in Coupled Flexural and Torsional Oscillations of an Unbalanced Rotating Shaft
,”
J. Sound Vib.
,
183
(
5
), pp.
889
897
.10.1006/jsvi.1995.0293
36.
Hegazy
,
U. H.
,
Eissa
,
M. H.
, and
Amer
,
Y. A.
,
2008
, “
A Time-Varying Stiffness Rotor Active Magnetic Bearings Under Combined Resonance
,”
ASME J. Appl. Mech.
,
75
(
1
), p.
011011
.10.1115/1.2755118
37.
Kamel
,
M.
, and
Bauomy
,
H. S.
,
2009
, “
Nonlinear Oscillation of a Rotor-AMB System With Time Varying Stiffness and Multi-External Excitations
,”
ASME J. Vib. Acoust.
,
131
(
3
), p.
031009
.10.1115/1.3085884
38.
Gasch
,
R. A.
,
1993
, “
A Survey of the Dynamic Behaviour of a Simple Rotating Shaft With a Transverse Crack
,”
J. Sound Vib.
,
160
(
2
), pp.
313
332
.10.1006/jsvi.1993.1026
39.
Pu
,
Y.
,
Chen
,
J.
,
Zou
,
J.
, and
Zhong
,
P.
,
2002
, “
The Research on Non-Linear Characteristics of a Cracked Rotor and Reconstruction of the Crack Forces
,”
Proc. Inst. Mech. Eng., Part C
,
216
(
11
), pp.
1099
1108
.10.1243/095440602761609461
40.
Qin
,
W.
, and
Meng
,
G.
,
2003
, “
Nonlinear Dynamic Response and Chaos of a Cracked Rotor With Two Disks
,”
Int. J. Bifurcation Chaos
,
13
(
11
), pp.
3425
3436
.10.1142/S021812740300865X
41.
Chen
,
C.
, and
Dai
,
L.
,
2007
, “
Bifurcation and Chaotic Response of a Cracked Rotor System With Viscoelastic Supports
,”
Nonlinear Dyn.
,
50
(
3
), pp.
483
509
.10.1007/s11071-006-9186-x
42.
Dohnal
,
F.
, and
Verhulst
,
F.
,
2008
, “
Averaging in Vibration Suppression by Parametric Stiffness Excitation
,”
Nonlinear Dyn.
,
54
(
3
), pp.
231
248
.10.1007/s11071-007-9325-z
43.
Dohnal
,
F.
,
2008
, “
Damping by Parametric Stiffness Excitation: Resonance and Anti-Resonance
,”
J. Vib. Control
,
14
(
5
), pp.
669
688
.10.1177/1077546307082983
44.
Dohnal
,
F.
,
2008
, “
General Parametric Stiffness Excitation—Anti-Resonance Frequency and Symmetry
,”
Acta Mech.
,
196
(
1
), pp.
15
31
.10.1007/s00707-007-0497-x
45.
Dohnal
,
F.
,
2012
, “
Experimental Studies on Damping by Parametric Excitation Using Electromagnets
,”
Proc. Inst. Mech. Eng., Part C
,
226
(
8
), pp.
2015
2027
.10.1177/0954406212439515
46.
Ecker
,
H.
,
2009
, “Beneficial Effects of a Parametric Excitation in Rotor Systems,”
IUTAM Symposium on Emerging Trends in Rotor Dynamics
, New Delhi, India, Mar. 23–26.10.1007/978-94-007-0020-8_31
47.
Tondl
,
A.
,
1960
, “
The Stability of Motion of a Rotor With Unsymmetrical Shaft on an Elastically Supported Mass Foundation
,”
Ingenieur-Arch.
,
29
(
6
), pp.
410
418
.10.1007/BF00536604
48.
Tondl
,
A.
, and
Ecker
,
H.
,
2003
, “
On the Problem of Self-Excited Vibration Quenching by Means of Parametric Excitation
,”
Arch. Appl. Mech.
,
72
(
11–12
), pp.
923
932
.10.1007/s00419-002-0265-2
49.
Verhulst
,
F.
,
1990
,
Nonlinear Differential Equations and Dynamical Systems
,
Springer-Verlag
,
New York
.
50.
Ecker
,
H.
, and
Pumhössel
,
T.
,
2011
, “
Parametric Excitation of a Rotor System Due to a Periodic Axial Force
,”
7th European Nonlinear Dynamics Conference
(ENOC 2011), Rome, Italy, July 24–29.
51.
Hsu
,
C. S.
,
1974
, “
On Approximating a General Linear Periodic System
,”
J. Math. Anal. Appl.
,
45
(
1
), pp.
234
251
.10.1016/0022-247X(74)90134-6
52.
Huang
,
J. L.
,
Su
,
R. K. L.
, and
Chen
,
S. H.
,
2009
, “
Precise Hsu's Method for Analyzing the Stability of Periodic Solutions of Multi-Degrees-of-Freedom Systems With Cubic Nonlinearity
,”
Comput. Struct.
,
87
(
23–24
), pp.
1624
1630
.10.1016/j.compstruc.2009.09.005
53.
Dohnal
,
F.
, and
Markert
,
R.
,
2010
, “
Stability Improvement of a Flexible Rotor in Active Magnetic Bearings by Time-Periodic Stiffness Variation
,”
10th International Conference on Motion and Vibration Control (MOVIC2010)
, Tokyo, Japan, Aug. 17–20.
You do not currently have access to this content.