Gas turbine engine components are subject to both low-cycle fatigue (LCF) and high-cycle fatigue (HCF) loads. To improve engine reliability, durability and maintenance, it is necessary to understand the interaction of LCF and HCF in these components, which can adversely affect the overall life of the engine while they are occurring simultaneously during a flight cycle. A fully coupled aeromechanical fluid–structure interaction (FSI) analysis in conjunction with a fracture mechanics analysis was numerically performed to predict the effect of representative fluctuating loads on the fatigue life of blisk fan blades. This was achieved by comparing an isolated rotor (IR) to a rotor in the presence of upstream inlet guide vanes (IGVs). A fracture mechanics analysis was used to combine the HCF loading spectrum with an LCF loading spectrum from a simplified engine flight cycle in order to determine the extent of the fatigue life reduction due to the interaction of the HCF and LCF loads occurring simultaneously. The results demonstrate the reduced fatigue life of the blades predicted by a combined loading of HCF and LCF cycles from a crack growth analysis, as compared to the effect of the individual cycles. In addition, the HCF aerodynamic forcing from the IGVs excited a higher natural frequency of vibration of the rotor blade, which was shown to have a detrimental effect on the fatigue life. The findings suggest that FSI, blade–row interaction and HCF/LCF interaction are important considerations when predicting blade life at the design stage of the engine. The lack of available experimental data to validate this problem emphasizes the utility of a numerical approach to first examine the physics of the problem and second to help establish the need for these complex experiments.

References

References
1.
Nicholas
,
T.
,
1999
, “
Critical Issues in High Cycle Fatigue
,”
Int. J. Fatigue
,
21
(
1
), pp.
S221
S231
.10.1016/S0142-1123(99)00074-2
2.
Powell
,
B. E.
, and
Duggan
,
T. V.
,
1987
, “
Crack Growth in Ti-6AI-4V Under the Conjoint Action of High and Low Cycle Fatigue
,”
Int. J. Fatigue
,
9
(
4
), pp.
195
202
.10.1016/0142-1123(87)90021-1
3.
Powell
,
B.
,
Hawkyard
,
M.
, and
Grabowski
,
L.
,
1997
, “
The Growth of Cracks in Ti-6Al-4V Plate Under Combined High and Low Cycle Fatigue
,”
Int. J. Fatigue
,
19
(
1
), pp.
167
176
.10.1016/S0142-1123(97)00016-9
4.
Byrne
,
J.
,
Hall
,
R.
, and
Powell
,
B.
,
2003
, “
Influence of LCF Overloads on Combined HCF/LCF Crack Growth
,”
Int. J. Fatigue
,
25
(
9–11
), pp.
827
834
.10.1016/S0142-1123(03)00131-2
5.
Goodin
,
E.
,
Kallmeyer
,
A.
, and
Kurath
,
P.
,
2002
, “
Multiaxial Fatigue Evaluation of Ti-6Al-4V Under Simulated Mission Histories
,” Seventh National Turbine Engine High Cycle Fatigue Conference, Palm Beach Gardens, FL, May 14–17, pp. 14–23.
6.
Dungey
,
C.
, and
Bowen
,
P.
,
2004
, “
The Effect of Combined Cycle Fatigue Upon the Fatigue Performance of Ti-6Al-4V Fan Blade Material
,”
J. Mater. Process. Technol.
,
153–154
(
1
), pp.
374
379
.10.1016/j.jmatprotec.2004.04.403
7.
Lanning
,
D.
,
Haritos
,
G. K.
,
Nicholas
,
T.
, and
Maxwell
,
D. C.
,
2001
, “
Low-Cycle Fatigue/High-Cycle Fatigue Interactions in Notched Ti-6Al-4V*
,”
Fatigue Fract. Eng. Mater. Struct.
,
24
(
9
), pp.
565
577
.10.1046/j.1460-2695.2001.00411.x
8.
Schweizer
,
C.
,
Seifert
,
T.
,
Nieweg
,
B.
,
von Hartrott
,
P.
, and
Riedel
,
H.
,
2011
, “
Mechanisms and Modelling of Fatigue Crack Growth Under Combined Low and High Cycle Fatigue Loading
,”
Int. J. Fatigue
,
33
(
2
), pp.
194
202
.10.1016/j.ijfatigue.2010.08.008
9.
Mendiaa
,
L.
,
Estensoroa
,
F. J.
,
Maryb
,
C.
, and
Vogelc
,
F.
,
2011
, “
Effect of Combined Cycle Fatigue on Ti6242 Fatigue Strength
,”
Procedia Eng.
,
10
, pp.
1809
1814
.10.1016/j.proeng.2011.04.301
10.
Srinivasan
,
A.
,
1997
, “
Flutter and Resonant Vibration Characteristics of Engine Blades
,”
ASME J. Eng. Gas Turbines Power
,
119
(
4
), pp.
742
775
.10.1115/1.2817053
11.
Cowles
,
B.
,
1996
, “
High Cycle Fatigue in Aircraft Gas Turbines—An Industry Perspective
,”
Int. J. Fract.
,
80
(
1
), pp.
147
163
.10.1007/BF00012667
12.
Corran
,
R. S. J.
, and
Williams
,
S. J.
,
2007
, “
Lifting Methods and Safety Criteria in Aero Gas Turbines
,”
Eng. Failure Anal.
,
14
(
3
), pp.
518
528
.10.1016/j.engfailanal.2005.08.010
13.
Carstens
,
V.
,
Kemme
,
R.
, and
Schmitt
,
S.
,
2003
, “
Coupled Simulation of Flow-Structure Interaction in Turbomachinery
,”
Aerosp. Sci. Technol.
,
7
(
4
), pp.
298
306
.10.1016/S1270-9638(03)00016-6
14.
Zhang
,
C.
,
Ye
,
Z.
, and
Liu
,
F.
,
2009
, “
Numerical Researches on Aeroelastic Problem of a Rotor Due to IGV/Fan Interaction
,”
AIAA
Paper No. 2009-865.10.2514/6.2009-865
15.
Sadeghi
,
M.
, and
Lui
,
F.
,
2005
, “
Coupled Fluid-Structure Simulation for Turbomachinery Blade Rows
,”
AIAA
Paper No. 2005-18.10.2514/6.2005-18
16.
Lau
,
Y. L.
,
Leung
,
R. C. K.
, and
So
,
R. M. C.
,
2007
, “
Vortex-Induced Vibration Effect on Fatigue Life Estimate of Turbine Blades
,”
J. Sound Vib.
,
307
(
3–5
), pp.
698
719
.10.1016/j.jsv.2007.06.029
17.
Voigt
,
C.
,
Frey
,
C.
, and
Kersken
,
H.
,
2010
, “
Development of a Generic Surface Mapping Algorithm for Fluid-Structure-Interaction Simulations in Turbomachinery
,”
5th European Conference on Computational Fluid Dynamics
(ECCOMAS CFD 2010), Lisbon, Portugal, June 14–17.
18.
Dhopade
,
P.
,
Neely
,
A. J.
,
Young
,
J.
, and
Shankar
,
K.
,
2012
, “
High-Cycle Fatigue of Fan Blades Accounting for Fluid–Structure Interaction
,”
ASME
Paper No. GT2012-68102.10.1115/GT2012-68102
19.
Moffat
,
S.
, and
He
,
L.
,
2005
, “
Modeling and Analysis of Mistuned Bladed Disk Vibration: Status and Emerging Directions
,”
J. Fluids Struct.
,
20
(2), pp.
217
234
.10.1016/j.jfluidstructs.2004.10.012
20.
Zhou
,
X.
, and
Wolff
,
J.
,
2004
, “
Transonic Compressor IGV/Rotor Interaction Analysis Including Fluid–Structure Interaction
,”
AIAA
Paper No. 2004-5292.10.2514/6.2004-5292
21.
Vogt
,
D.
,
2011
, “
Turbovib—A Swedish Research Initiative Addressing Turbomachinery Vibratory Phenomena
,”
20th International Society for Airbreathing Engines Conference
, Gothenburg, Sweden, Sept. 12–16.
22.
Mayorca
,
M. A.
,
2011
, “
Numerical Methods for Turbomachinery Aeromechanical Predictions
,” Ph.D. thesis, KTH Royal Institute of Technology, Stockholm, Sweden.
23.
Anderson
,
T.
,
2005
,
Fracture Mechanics: Fundamentals and Applications
,
3rd ed.
,
Taylor & Francis
, Boca Raton, FL.
24.
Department of Defense,
2003
,
MIL-HDBK-5J Handbook of Metallic Materials and Elements for Aerospace Vehicle Structures
, U.S. Department of Defense, Washington, DC.
25.
Cumpsty
,
N.
,
1997
,
Jet Propulsion
,
Cambridge University
Press, Cambridge, UK.
26.
He
,
L.
,
1994
, “
Integration of 2D Fluid/Structure Coupled System for Calculations of Turbomachinery Aerodynamic/Aeroelastic Instabilities
,”
Comput. Fluid Dyn.
,
3
(
3
), pp.
217
231
.10.1080/10618569408904508
27.
He
,
L.
,
2003
, “
Unsteady Flow and Aeroelasticity
,”
Handbook of Turbomachinery
,
CRC Press
, Boca Raton, FL.
28.
Petrov
,
E. P.
,
Zachariadis
,
Z.-I.
,
Beretta
,
A.
, and
Elliott
,
R.
,
2013
, “
A Study of Nonlinear Vibrations in a Frictionally Damped Turbine Bladed Disk With Comprehensive Modeling of Aerodynamic Effects
,”
ASME J. Eng. Gas Turbines Power
,
135
(
3
), p.
032504
.10.1115/1.4007871
29.
Balasubramanian
,
R.
,
Barrows
,
S.
, and
Chen
,
J.
,
2008
, “
Investigation of Shear-Stress Transport Turbulence Model for Turbomachinery Applications
,”
AIAA
Paper No. 2008-566.10.2514/6.2008-566
30.
Matsuishi
,
M.
, and
Endo
,
T.
,
1968
, “
Fatigue of Metals Subjected to Varying Stress
,” Japanese Society of Mechanical Engineers, Fukouka, Japan, March, pp. 37–40.
31.
Murakami
,
Y.
,
1976
, “
A Simple Procedure for the Accurate Determination of Stress Intensity Factors by Finite Element Method
,”
Eng. Fract. Mech.
,
8
(
4
), pp.
643
655
.10.1016/0013-7944(76)90038-2
32.
Strazisar
,
A. J.
,
Wood
,
J. R.
,
Hathaway
,
M. D.
, and
Suder
,
K. L.
,
1989
, “
Laser Anemometer Measurements in a Transonic Axial-Flow Fan Rotor
,” NASA Lewis Research Center, Cleveland, OH, Technical Report No. NASA TP-2879.
33.
Doi
,
H.
,
2002
, “
Fluid/Structure Coupled Aeroelastic Computations for Transonic Flows in Turbomachinery
,” Ph.D. thesis, Stanford University, Stanford, CA.
34.
Reddy
,
T.
, and
Bakhle
,
M.
,
2009
, “
Aeroelastic Computations of a Compressor Stage Using the Harmonic Balance Method
,”
AIAA
Paper No. 2009-5420.10.2514/6.2009-5420
35.
Vasanthakumar
,
P.
,
2011
, “
Computation of Aerodynamic Damping for Flutter Analysis of a Transonic Fan
,”
ASME
Paper No. GT2011-46597.10.1115/GT2011-46597
36.
Roache
,
P.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Ann. Rev. Fluid Mech.
,
29
(
1
), pp.
123
160
.10.1146/annurev.fluid.29.1.123
37.
Kumar
,
S.
,
Roy
,
N.
, and
Ganguli
,
R.
,
2007
, “
Monitoring Low Cycle Fatigue Damage in Turbine Blade Using Vibration Characteristics
,”
Mech. Syst. Signal Process.
,
21
(
1
), pp.
480
501
.10.1016/j.ymssp.2005.02.011
38.
Zielinski
,
M.
, and
Ziller
,
G.
,
2000
, “
Noncontact Vibration Measurements on Compressor Rotor Blades
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
847
–856.10.1088/0957-0233/11/7/301
39.
Kielb
,
R. E.
,
Barter
,
J. W.
,
Thomas
,
J. P.
, and
Hall
,
K. C.
,
2003
, “
Blade Excitation by Aerodynamic Instabilities: A Compressor Blade Study
,”
ASME
Paper No. GT2003-38634.10.1115/GT2003-38634
40.
Tucker
,
P.
,
2011
, “
Computation of Unsteady Turbomachinery Flows: Part 1—Progress and Challenges
,”
Prog. Aerosp. Sci.
,
47
(
7
), pp.
522
545
.10.1016/j.paerosci.2011.06.004
41.
Dhopade
,
P.
,
2014
, “
Aeromechanical Modelling of Rotating Fan Blades to Investigate High-Cycle and Low-Cycle Fatigue Interaction
,” Ph.D. thesis, School of Engineering and Information Technology, UNSW Canberra, Canberra, Australia.
42.
Dickmann
,
H.-P.
,
Wimmel
,
T. S.
,
Szwedowicz
,
J.
,
Filsinger
,
D.
, and
Roduner
,
C. H.
,
2005
, “
Unsteady Flow in a Turbocharger Centrifugal Compressor: Three-Dimensional Computational Fluid Dynamics Simulation and Numerical and Experimental Analysis of Impeller Blade Vibration
,”
ASME J. Turbomach.
,
128
(
3
), pp.
455
465
.10.1115/1.2183317
43.
Micallef
,
D.
,
Witteck
,
D.
,
Wiedermann
,
A.
,
Klu
,
D.
, and
Mailach
,
R.
,
2012
, “
Three-Dimensional Viscous Flutter Analyses of a Turbine Cascade in Subsonic and Transonic Flows
,”
ASME
Paper No. GT2012-68396.10.1115/GT2012-68396
44.
Doggett
,
R. V.
,
Rainey
,
A. G.
, and
Morgan
,
H. G.
,
1959
, “
An Experimental Investigation of Aerodynamic Effects of Airfoil Thickness on Transonic Flutter Characteristics
,” NASA Langley Research Center, Hampton, VA, Technical Report No. NASA TM X-79.
45.
Tijdeman
,
H.
,
1977
, “
Investigations of the Transonic Flow Around Oscillating Airfoils
,” Ph.D. thesis, Technische Hogeschool Delft, Delft, The Netherlands.
46.
Médard
,
L.
,
1976
,
L'air Liquide
,
Gas Encyclopedia
, Elsevier Science B.V., Amsterdam, The Netherlands.
47.
Masi
,
J. F.
,
1952
, “
Thermodynamic Properties of Gaseous Difluorodichloromethane (Freon-12)
,”
J. Am. Chem. Soc.
,
74
(
19
), pp.
4738
4741
.10.1021/ja01139a003
You do not currently have access to this content.