SiC-based ceramic matrix composites (CMC) in turbine engine applications must sustain certain foreign object impacts (FOIs) that might occur in services. Experiments and nondestructive evaluation (NDE) have illustrated good correlations between impact energy and foreign object damage (FOD) assessed using electrical resistivity (ER), acoustic emission (AE), and microscopy. A progressive failure dynamic analysis (PFDA) method is explored in understanding and predicting the damage states, ER, and residual strength after impact of CMCs. To accurately correlate the damage state with ER, the PFDA tool has been improved to incorporate the physical damage mechanisms in CMCs, which are matrix microcrack density due to both longitudinal and transverse tensile loads and the fiber breakage due to probabilistic fiber strength distribution. The predicted damage states and ER are correlated with the measurement of FOD and validated with tension after impact tests using high temperature ER. The PFDA tool has demonstrated a great potential for CMCs' FOD and residual strength predictions.

References

References
1.
Choi
,
S. R.
,
2008
, “
Foreign Object Damage Phenomenon by Steel Ball Projectiles in a SiC/SiC Ceramic Matrix Composite at Ambient and Elevated Temperatures
,”
J. Am. Ceram. Soc.
,
91
(
9
), pp.
2963
2968
.10.1111/j.1551-2916.2008.02498.x
2.
Smith
,
C. E.
,
Morscher
,
G. N.
, and
Xia
,
Z.
,
2011
, “
Electrical Resistance as a Nondestructive Evaluation Technique for CVI SiC/SiC Ceramic Matrix Composites Under Stress-Rupture Conditions
,”
Int. J. Appl. Ceram. Technol.
,
8
(
2
), pp.
298
307
.10.1111/j.1744-7402.2010.02587.x
3.
Smith
,
C. E.
, and
Gyekenyesi
,
A. L.
,
2011
, “
Detecting Cracks in Ceramic Matrix Composites by Electrical Resistance
,”
Proc. SPIE,
7983
, p. 79830N10.1117/12.882027.
4.
Verrilli
,
M.
,
Foster
,
S.
, and
Subit
,
J.
,
2010
, “
Impact Behavior of a SiC/SiC Composite at an Elevated Temperature
,”
7th International Conference on High Temperature Composites (HT-CMC 7)
, Bayreuth, Germany, Sept. 20–22.
5.
Garg
,
M.
,
Abdi
,
F.
,
Zammit
,
A.
,
Bayandor
,
J.
,
Suh
,
Y.
, and
Song
,
S.
,
2009
, “
Impact Damage Resistance and Compression-After-Impact Strength of Sandwich Composites
,”
Society for the Advancement of Material and Process Engineering Conference and Exhibition (SAMPE 2009)
, Baltimore, MD, May 18–21.
6.
Smith
,
C. E.
,
Morscher
,
G. N.
, and
Xia
,
Z. H.
,
2008
, “
Monitoring Damage Accumulation in Ceramic Matrix Composites Using Electrical Resistivity
,”
Scripta Mater.
,
59
(
4
), pp.
463
466
.10.1016/j.scriptamat.2008.04.033
7.
Hashin
,
Z.
,
1986
, “
Analysis of Stiffness Reduction of Cracked Cross-Ply Laminates
,”
Eng. Fract. Mech.
,
25
(
5–6
), pp.
771
778
.10.1016/0013-7944(86)90040-8
8.
Laws
,
N.
, and
Dvorak
,
G. J.
,
1988
, “
Progressive Transverse Cracking in Composite Laminates
,”
J. Compos. Mater.
,
22
(
10
), pp.
900
915
.10.1177/002199838802201001
9.
Han
,
Y. M.
, and
Hahn
,
H. T.
,
1989
, “
Ply Cracking and Property Degradations of Symmetric Balanced Laminates Under General In-Plane Loading
,”
Compos. Sci. Technol.
,
35
(
4
), pp.
377
397
.10.1016/0266-3538(89)90059-6
10.
Nuismer
,
R. J.
, and
Tan
,
S. C.
,
1988
, “
Constitutive Relations of a Cracked Composite Lamina
,”
J. Compos. Mater.
,
22
(
4
), pp.
306
321
.10.1177/002199838802200401
11.
Allen
,
D. H.
,
Harris
,
C. E.
, and
Groves
,
S. E.
,
1987
, “
A Thermo-Mechanical Constitutive Theory for Elastic Composites With Distributed Damage
,”
Int. J. Solids Struct.
,
23
(
9
), pp.
1301
1338
.10.1016/0020-7683(87)90107-7
12.
Zhang
,
J.
,
Fan
,
J.
, and
Soutis
,
C.
,
1992
, “
Analysis of Multiple Matrix Cracking in [±θm/90n]s Composite Laminates. Part 2: Development of Transverse Ply Cracks
,”
Composites
,
23
(
5
), pp.
299
304
.10.1016/0010-4361(92)90328-R
13.
Abdi
,
F.
,
Su
,
X.
,
Morscher
,
Gregory
,
N.
, and
DiCarlo
,
J.
,
2009
, “
Predicting/Validating Microcrack Density Development and Acoustic Emission for 3d Orthogonal CVI-MI SiC/SiC Composites
,”
Society for the Advancement of Material and Process Engineering Conference and Exhibition (SAMPE 2009)
, Baltimore, MD, May 18–21.
14.
Chamis
,
C. C.
,
1987
, “
Simplified Composite Micromechanics for Predicting Microstresses
,”
J. Reinf. Plast. Compos.
,
6
(
3
), pp.
268
289
.10.1177/073168448700600305
15.
Chamis
,
C. C.
,
1983
, “
Simplified Composite Micromechanics Equations for Hygral, Thermal and Mechanical Properties
,” NASA Lewis Research Center, Cleveland, OH, Technical Memorandum 83320.
16.
Abdi
,
F.
,
Thompson
,
D.
,
Morrisson
,
J.
, and
Iyer
,
S.
,
2007
, “
2D/3D Oxide/Oxide Ceramic Matrix Composites Life Prediction Methods: Virtual Characterization of Mechanical Properties, and Virtual Testing of Structural Component
,”
ASME
Paper No. GT2007-28332.10.1115/GT2007-28332
17.
Abdi
,
F.
,
Yun
,
H.
,
Godines
,
C.
, and
Morscher
,
G.
,
2010
, “
Physics-Based Life Prediction Model Incorporating Environmental Effects for SiC/SiC Ceramic Matrix Composites
,” Contract No: FA8650-10-M-5115, U.S. Air Force, Wright-Patterson, AFB, OH.
18.
Minnetyan
,
L.
,
Abdi
,
F.
,
Chamis
,
C.
, and
Huang
,
D.
,
2009
, “
Prediction/Verification of Composite Electrical Properties and Nano Insertion Improvement
,”
Procedia Eng.
,
1
(
1
), pp.
51
54
.10.1016/j.proeng.2009.06.014
19.
Morscher
,
G. N.
,
Ojard
,
G.
,
Miller
,
R.
,
Gowayed
,
Y.
,
Santhosh
,
U.
,
Ahmad
,
J.
, and
John
,
R.
,
2008
, “
Tensile Creep and Fatigue of Sylramic-iBN Melt-Infiltrated SiC Matrix Composites: Retained Properties, Damage Development, and Failure Mechanisms
,”
Compos. Sci. Technol.
,
68
(
15–16
), pp.
3305
3313
.10.1016/j.compscitech.2008.08.028
You do not currently have access to this content.