Integrated solar combined cycle (ISCC) is an operationally simple, clean electric power generation system that is economically more attractive vis-à-vis stand-alone concentrating solar power (CSP) technology. The ISCC can be designed to achieve two primary goals: (1) replace natural gas combustion with solar thermal power at the same output rating to reduce fuel consumption and stack emissions and/or (2) replace supplementary (duct) firing in the heat recovery steam generator (HRSG) with “solar firing” to boost power generation on hot days. Optimal ISCC design requires a seamless integration of the solar thermal and fossil-thermal technologies to maximize the solar contribution to the overall system performance at the lowest possible size and cost. The current paper uses the exergy concept of the second law of thermodynamics to distill the quite complex optimization problem to its bare essentials. The goal is to provide the practitioners with physics-based, user-friendly guidelines to understand the key drivers and the interaction among them. Ultimately, such understanding is expected to help direct studies involving heavy use of time consuming system models in a focused manner and evaluate the results critically to arrive at feasible ISCC designs.

References

1.
Glatzmaier
,
G.
,
2011
, “
Summary Report for Concentrating Solar Power Thermal Storage Workshop
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/TP-5500-52134.
2.
Turchi
,
C. S.
,
Ma
,
Z.
, and
Erbes
,
M.
,
2011
, “
Gas Turbine Solar Parabolic Trough Hybrid Designs
,”
ASME
Paper No. GT2011-45184.10.1115/GT2011-45184
3.
Cox
,
J.
,
2010
, “
Implications of Intermittency
,”
Modern Power Systems
,
30
(1), pp.
22
23
.
4.
Armistead
,
T. F.
,
2010
, “
Integrating Solar, Conventional Energy Resources
,”
Comb. Cycle J.
,
2Q
(
2010
), pp.
106
111
.
5.
Ugolini
,
D.
,
Zachary
,
J.
, and
Park
,
H.
,
2009
, “
Options for Hybrid Solar and Conventional Fossil Plants
,”
Bechtel Technol. J.
,
2
(
1
), pp.
133
143
.
6.
Camporeale
,
S. M.
,
Fortunato
,
B.
, and
Saponaro
,
A.
,
2011
, “
Repowering of a Rankine Cycle Power Plant by Means of Concentrating Solar Collectors
,”
ASME
Paper No. GT2011-45736.10.1115/GT2011-45736
7.
Barigozzi
,
G.
,
Franchini
,
G.
,
Perdichizzi
,
A.
, and
Ravelli
,
A.
,
2013
, “
Simulation of Solarized Combined Cycles: Comparison Between Hybrid GT and ISCC Plants
,”
ASME
Paper No. GT2013-95843. 10.1115/GT2013-95483
8.
Horn
,
M.
,
Führing
,
H.
, and
Rheinlander
,
J.
,
2004
, “
Economic Analysis of Integrated Solar Combined Cycle Power Plants: A Sample Case: The Economic Feasibility of an ISCC Power Plant in Egypt
,”
Energy
,
29
(
5–6
), pp.
935
945
.10.1016/S0360-5442(03)00198-1
9.
Kalogirou
,
S. A.
,
2009
,
Solar Energy Engineering: Process and Systems
,
Academic Press
,
Burlington, MA
.
10.
Pihl
,
E.
, and
Johnsson
,
F.
,
2012
, “
Concentrating Solar Power Hybrids–Technologies and European Retrofit Potential
,”
ISES-Europe Solar Conference (Eurosun 2012
),
Rejika, Croatia
, Sept. 17–21.
11.
Petrov
,
M. P.
,
Salomon Popa
,
M.
, and
Fransson
,
T. H.
,
2012
, “
Solar Augmentation of Conventional Steam Plants: From System Studies to Reality
,”
World Renewable Energy Forum (WREF 2012
),
Denver, CO
, May 13–17.
12.
Selig
,
M.
, and
Mertins
,
M.
,
2010
, “
From Saturated to Superheated Direct Solar Steam Generation—Technical Challenges and Economic Benefits
,”
16th SolarPACES Conference (SolarPACES 2010)
,
Perpignan, France
, Sept. 21–24.
13.
Kelly
,
B.
,
Herrmann
,
U.
, and
Hale
,
M. J.
,
2001
, “
Optimization Studies for Integrated Solar Combined Cycle Systems
,”
Solar Forum 2001
,
Washington, DC
, Apr. 21–25.
14.
Schenk
,
H.
,
Hirsch
,
T.
,
Feldhoff
,
J. F.
, and
Wittmann
,
M.
,
2012
, “
Energetic Comparison of Linear Fresnel and Parabolic Trough Collector Systems
,”
ASME
Paper No. ES2012-91109.10.1115/ES2012-91109
15.
Kutscher
,
C.
,
Burkholder
,
F.
, and
Stynes
,
K.
,
2010
, “
Generation of a Parabolic Trough Collector Efficiency Curve From Separate Measurements of Outdoor Optical Efficiency and Indoor Receiver Heat Loss
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/CP-5500-49304.
16.
CSP
Today,
2013
, “
CSP Solar Tower Report: Cost, Performance and Key Trends
,” FC Business Intelligence Ltd., London.
17.
CSP
Today,
2012
, “
CSP Parabolic Trough Report: Cost, Performance and Key Trends
,” FC Business Intelligence Ltd., London
.
18.
Thermoflow
, “
GT PRO, GT MASTER
,” Version 23.0, Thermoflow, Inc., Southborough, MA.
19.
Bohtz
,
C.
,
Gokarn
,
S.
, and
Conte
,
E.
,
2013
, “
Integrated Solar Combined Cycles (ISCC) to Meet Renewable Targets and Reduce CO2 Emissions
,”
PowerGen Europe
,
Vienna, Austria
, June 4–6.
20.
Ojo
,
C. O.
,
Pont
,
D.
,
Conte
,
E.
, and
Carroni
,
R.
,
2012
, “
Performance Evaluation of an Integrated Solar Combined Cycle
,”
ASME
Paper No. GT2012-68134.10.1115/GT2012-68134
21.
Gas Turbine World
,
2013
,
Gas Turbine World 2013 GTW Handbook
, Vol.
30
,
Pequot Publishing, Inc.
,
Fairfield, CT
.
22.
Gülen
,
S. C.
,
2013
, “
What Is the Worth of 1 Btu/kWh of Heat Rate?
Power
,
157
(6), pp.
61
63
.
23.
Mehos
,
M. S.
,
Finch
,
N. S.
,
Ho
,
C. K.
,
Turchi
,
C. S.
, and
Wagner
,
M. J.
,
2012
, “
Probabilistic Analysis of Power Tower Designs and Technology Improvement Opportunities to Meet Sunshine Goals
,”
SolarPaces 2012
,
Marrakech, Morocco
, Sept. 11–14.
24.
Peter
,
M.
,
2012
, “
Integrated Solar Combined Cycle: A Hybrid Energy System Case Study
,” I-NEST Nuclear Hybrid Energy Systems Workshop, Salt Lake City, UT, Apr. 3–4.
25.
Dersch
,
J.
,
Geyer
,
M.
,
Herrmann
,
U.
,
Jones
,
S. A.
,
Kelly
,
B.
,
Kistner
,
R.
,
Ortmanns
,
W.
,
Pitz-Paal
,
R.
, and
Price
,
H.
,
2004
, “
Trough Integration into Power Plants—A Study on the Performance and Economy of Integrated Solar Combined Cycle Systems
,”
Energy
,
29
(
5–6
), pp.
947
959
.10.1016/S0360-5442(03)00199-3
26.
Hinkley
,
J.
,
Curtin
,
B.
,
Hayward
,
J.
,
Wonhas
,
A.
,
Boyd
,
R.
,
Grima
,
C.
,
Tadros
,
A.
,
Hall
,
R.
,
Naicker
,
K.
, and
Mikhail
,
A.
,
2011
, “
Concentrating Solar Power—Drivers and Opportunities for Cost-Competitive Electricity
,” Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Australia, http://www.csiro.au
27.
Glatzmaier
,
G.
,
2011
, “
Developing a Cost Model and Methodology to Estimate Capital Costs for Thermal Energy Storage
,” National Renewable Energy Laboratory, Boulder, CO, Report No. NREL/TP-5500-53066.
28.
Spelling
,
J.
,
Jöcker
,
M.
, and
Martin
,
A.
,
2011
, “
Thermal Modeling of a Solar Steam Turbine With a Focus on Start-Up Time Reduction
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
013001
.10.1115/1.4004148
You do not currently have access to this content.