This paper describes a new modular experimental facility that was purpose-built to investigate flow interactions between the combustor and first stage nozzle guide vanes (NGVs) of heavy duty power generation gas turbines with multiple can combustors. The first stage turbine NGV is subjected to the highest thermal loads of all turbine components and therefore consumes a proportionally large amount of cooling air that contributes detrimentally to the stage and cycle efficiency. It has become necessary to devise novel cooling concepts that can substantially reduce the coolant air requirement but still allow the turbine to maintain its aerothermal performance. The present work aims to aid this objective by the design and commissioning of a high-speed linear cascade, which consists of two can combustor transition ducts and four first stage NGVs. This is a modular nonreactive air test platform with engine realistic geometries (gas path and near gas path), cooling system, and boundary conditions (inlet swirl, turbulence level, and boundary layer). The paper presents the various design aspects of the high pressure (HP) blow down type facility, and the initial results from a wide range of aerodynamic and heat transfer measurements under highly engine realistic conditions.

References

1.
Horlock
,
J. H.
,
Watson
,
D. T.
, and
Jones
,
T. V.
,
2001
, “
Limitations on Gas Turbine Performance Imposed by Large Turbine Cooling Flows
,”
ASME J. Turbomach.
,
123
(
3
), pp.
487
494
.10.1115/1.1370156
2.
ACARE
,
2010
, “Aeronautics and Air Transport: Beyond Vision 2020 (Towards 2050),” Advisory Council for Aeronautics Research in Europe, Brussels, Belgium.
3.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.10.1016/j.pecs.2009.01.002
4.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2013
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
CRC Press, Taylor & Francis Group
,
New York
.
5.
Lakshminarayana
,
B.
,
1975
, “
Effects of Inlet Temperature Gradients on Turbomachinery Performance
,”
ASME J. Eng. Power
,
97
(
1
), pp.
64
71
.10.1115/1.3445917
6.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring.
,
R. P.
,
1989
, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propul. Power
,
5
(
1
), pp.
64
71
.10.2514/3.23116
7.
Dorney
,
D. J.
,
Gundy-Burlet
,
K. L.
, and
Sondak
,
D. L.
,
1999
, “
A Survey of Hot Streak Experiments and Simulations
,”
Int. J. Turbo Jet-Engines
,
16
(
1
), pp.
1
16
.10.1515/TJJ.1999.16.1.1
8.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Hurrion
,
J.
,
2007
, “
The Effect of Hot-Streaks on HP Vane Surface and Endwall Heat Transfer: An Experimental and Numerical Study
,”
ASME J. Turbomach.
,
129
(
1
), pp.
32
43
.10.1115/1.2370748
9.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
,
2009
, “
Effects of Combustor Exit Profiles on Vane Aerodynamic Loading and Heat Transfer in a High Pressure Turbine
,”
ASME J. Turbomach.
,
131
(
2
), p.
021008
.10.1115/1.2950051
10.
Mathison
,
R. M.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
,
2012
, “
Aerodynamics and Heat Transfer for a Cooled One and One-Half Stage High-Pressure Turbine—Part III: Impact of Hot-Streak Characteristics on Blade Row Heat Flux
,”
ASME J. Turbomach.
,
134
(
1
), p.
011008
.10.1115/1.4002996
11.
Basol
,
A. M.
,
Regina
,
K.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2012
, “
Integrated Combustor Turbine Design for Improved Aerothermal Performance: Effect of Dilution Air Control
,”
ASME J. Eng. Gas Turbines Power
,
134
(
9
), p.
091501
.10.1115/1.4006671
12.
Turrell
,
M. D.
,
Stopford
,
P. J.
,
Syed
,
K. J.
, and
Buchanan
,
E.
,
2004
, “
CFD Simulation of the Flow Within and Downstream of a High-Swirl Lean Premixed Gas Turbine Combustor
,”
ASME
Paper No. GT2004-53112.10.1115/GT2004-53112
13.
Qureshi
,
I.
,
Smith
,
A. D.
, and
Povey
,
T.
,
2011
, “
HP Vane Aerodynamics and Heat Transfer in the Presence of Aggressive Inlet Swirl
,”
ASME
Paper No. GT2011-46037.10.1115/GT2011-46037
14.
Blair
,
M. F.
,
1974
, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
ASME J. Heat Transfer
,
96
(
4
), pp.
524
529
.10.1115/1.3450239
15.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
,
2007
, “
The Effects of Varying the Combustor-Turbine Gap
,”
ASME J. Turbomach.
,
129
(
4
), pp.
756
764
.10.1115/1.2720497
16.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
,
2012
, “
Effects of Orientation and Position of the Combustor-Turbine Interface on the Cooling of a Vane Endwall
,”
ASME J. Turbomach.
,
134
(
6
), p.
061019
.10.1115/1.4004817
17.
Lynch
,
S. P.
,
Thole
,
K. A.
,
Kohli
,
A.
,
Lehane
,
C.
, and
Praisner
,
T.
,
2013
, “
Endwall Heat Transfer for a Turbine Blade With an Upstream Cavity and Rim Seal
,”
ASME
Paper No. GT2013-94942.10.1115/GT2013-94942
18.
Mazzoni
,
C. M.
,
Klostermeier
,
C.
, and
Rosic
,
B.
,
2013
, “
Influence of Large Wake Disturbances Shed From the Combustor Wall on the Leading Edge Film Cooling
,”
ASME
Paper No. GT2013-94622.10.1115/GT2013-94622
19.
Aslanidou
,
I.
,
Rosic
,
B.
,
Kanjirakkad
,
V.
, and
Uchida
,
S.
,
2013
, “
Leading Edge Shielding Concept in Gas Turbines With Can Combustors
,”
ASME J. Turbomach.
,
135
(
2
), p.
021019
.10.1115/1.4007514
20.
Rosic
,
B.
,
Denton
,
J. D.
,
Horlock
,
J. H.
, and
Uchida
,
S.
,
2012
, “
Integrated Combustor and Vane Concept in Gas Turbines
,”
ASME J. Turbomach.
,
134
(
3
), p.
031005
.10.1115/1.4003023
21.
Hirsch
,
C.
, ed.,
1993
, “
Advanced Methods for Cascade Testing
,”
Advisory Group for Aerospace Research & Development
,
Neuilly-sur-Seine, France
, AGARDograph No. 328.
22.
ISO
,
2005
, “
Measurement of Gas Flow by Means of Critical Flow Venturi Nozzles
,”
International Organization for Standardization
,
Geneva, Switzerland
, Standard No. ISO 9300.
23.
Jacobi
,
S.
,
2013
, “
Influence of Lean Premixed Combustor Geometry on the First Turbine Vanes' Aerothermal Performance
,” Master's thesis, Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETH), Zurich.
24.
Gillespie
,
D. R. H.
,
1996
, “
Intricate Internal Cooling Systems for Gas Turbine Blading
,” Ph.D. thesis, Department of Engineering Science, University of Oxford, Oxford, UK.
25.
Ireland
,
P. T.
,
Neely
,
A. J.
,
Gillespie
,
D. R. H.
, and
Robertson
,
A. J.
,
1999
, “
Turbulent Heat Transfer Measurements Using Liquid Crystals
,”
Int. J. Heat Fluid Flow
,
20
(
4
), pp.
355
367
.10.1016/S0142-727X(99)00030-2
26.
Luque
,
S.
, and
Povey
,
T.
,
2011
, “
A Novel Technique for Assessing Turbine Cooling System Performance
,”
ASME J. Turbomach.
,
133
(
3
), p.
031013
.10.1115/1.4001232
27.
Oldfield
,
M. L. G.
,
2008
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
,
130
(
2
), p.
021023
.10.1115/1.2752188
28.
Piccini
,
E.
,
Guo
,
S. M.
, and
Jones
,
T. V.
,
2000
, “
The Development of a New Direct-Heat-Flux Gauge for Heat-Transfer Facilities
,”
Meas. Sci. Technol.
,
11
(
4
), pp.
342
349
.10.1088/0957-0233/11/4/302
29.
Schultz
,
D. L.
, and
Jones
,
T. V.
,
1973
, “
Heat-Transfer Measurements in Short-Duration Hypersonic Facilities
,”
Advisory Group for Aerospace Research & Development
,
Neuilly-sur-Seine, France
AGARDograph No. 165.
30.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
31.
Buttsworth
,
D. R.
, and
Jones
,
T. V.
,
1998
, “
A Fast-Response Total Temperature Probe for Unsteady Compressible Flows
,”
ASME J. Eng. Gas Turbines Power
,
120
(
4
), pp.
694
702
.10.1115/1.2818456
You do not currently have access to this content.