Effusion cooling represents the state of the art of liner cooling technology for modern combustors. This technique consists of an array of closely spaced discrete film cooling holes and contributes to lower the metal temperature by the combined protective effect of coolant film and heat removal through forced convection inside each hole. Despite many efforts reported in literature to characterize the cooling performance of these devices, detailed analyses of the mixing process between coolant and hot gas are difficult to perform, especially when superposition and density ratio effects as well as the interaction with complex gas side flow field become significant. Furthermore, recent investigations on the acoustic properties of these perforations pointed out the challenge to maintain optimal cooling performance also with orthogonal holes, which showed higher sound absorption. The objective of this paper is to investigate the impact of a realistic flow field on the adiabatic effectiveness performance of effusion cooling liners to verify the findings available in literature, which are mostly based on effusion flat plates with aligned cross flow, in case of swirled hot gas flow. The geometry consists of a tubular combustion chamber, equipped with a double swirler injection system and characterized by 22 rows of cooling holes on the liner. The liner cooling system employs slot cooling as well: its interactions with the cold gas injected through the effusion plate are investigated too. Taking advantage of the rotational periodicity of the effusion geometry and assuming axisymmetric conditions at the combustor inlet, steady state RANS calculations have been performed with the commercial code Ansys® CFX simulating a single circumferential pitch. Obtained results show how the effusion perforation angle deeply affects the flow-field around the corner of the combustor, in particular, with a strong reduction of slot effectiveness in case of 90 deg angle value.

References

References
1.
ICAO
,
2010
, “
Environmental Report
, Aviation and Climate Change,” International Civil Aviation Organization, Montreal, Canada, available at: http://www.icao.int/environmental-protection/Documents/Publications/ENV_Report_2010.pdf
2.
Lazik
,
W.
,
Doerr
,
T.
,
Bake
,
S.
,
Bank
,
R. V. D.
, and
Rackwitz
,
L.
,
2008
, “
Development of Lean-Burn Low-NOx Combustion Technology at Rolls-Royce Deutschland
,”
ASME
Paper No. GT2008-51115.10.1115/GT2008-51115
3.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion
,
CRC Press-Taylor & Francis Group
,
Boca Raton, FL
.
4.
Behrendt
,
T.
,
Hassa
,
C.
, and
Gerendas
,
M.
,
2008
, “
Characterisation of Advanced Combustor Cooling Concepts Under Realistic Operating Conditions
,”
ASME
Paper No. GT2008-51191. 10.1115/GT2008-51191
5.
Wurm
,
B.
,
Schulz
,
A.
,
Bauer
,
H. J.
, and
Gerendas
,
M.
,
2012
, “
Impact of Swirl Flow on the Cooling Performance of an Effusion Cooled Combustor Liner
,”
ASME J. Gas Turbines Power
,
134
(
12
), p.
121503
.10.1115/1.4007332
6.
Andrei
,
L.
,
Andreini
,
A.
,
Bianchini
,
C.
,
Facchini
,
B.
, and
Mazzei
,
L.
,
2013
, “
Numerical Analysis of Effusion Plates for Combustor Liners Cooling With Varying Density Ratio
,”
ASME
Paper No. GT2013-95039. 10.1115/GT2013-95039
7.
Marinov
,
S.
,
Kern
,
M.
,
Merkle
,
K.
,
Zarzalis
,
N.
,
Peschiulli
,
A.
,
Turrini
,
F.
, and
Sara
,
O. N.
,
2010
, “
On Swirl Stabilized Flame Characteristics Near the Weak Extinction Limit
,”
ASME
Paper No. GT2010-22335. 10.1115/GT2010-22335
8.
Bianchini
,
C.
,
Andrei
,
L.
,
Andreini
,
A.
, and
Facchini
,
B.
,
2013
, “
Numerical Benchmark of Non-Conventional RANS Turbulence Models for Film and Effusion Cooling
,”
ASME J. Turbomach.
, 135(4), p. 041026.10.1115/1.4007614
9.
Andreini
,
A.
,
Facchini
,
B.
,
Picchi
,
A.
,
Tarchi
,
L.
, and
Turrini
,
F.
,
2014
, “
Experimental and Theoretical Investigation of Thermal Effectiveness in Multi-Perforated Plates for Combustor Liner Effusion Cooling
,”
ASME J. Turbomach.
,
136
(
9
), p.
091003
.10.1115/1.4026846
10.
Wurm
,
B.
,
Schulz
,
A.
,
Bauer
,
H. J.
, and
Gerendas
,
M.
,
2013
, “
Cooling Efficiency for Assessing the Cooling Performance of an Effusion Cooled Combustor Liner
,”
ASME
Paper No. GT2013-94304. 10.1115/GT2013-94304
11.
Patil
,
S.
,
Abraham
,
S.
,
Taft
,
D.
,
Ekkad
,
S.
,
Kim
,
Y.
,
Dutta
,
P.
,
Moon
,
H.-K.
, and
Srinivasan
,
R.
,
2010
, “
Experimental and Numerical Investigation of Convective Heat Transfer in a Gas Turbine Can Combustor
,”
ASME J. Turbomach.
,
133
(
1
), p.
011028
.10.1115/1.4001173
12.
Martiny
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2000
, “
Effusion Cooled Combustor Liners of Gas Turbines—An Assessment of the Contributions of Convective, Impingement, and Film Cooling
,”
Symposium on Energy Engineering in the 21st Century (SEE2000)
, Hong Kong, Jan. 9–13.
13.
Behrendt
,
T.
, and
Gerendas
,
M.
,
2012
, “
Characterization of the Influence of Moderate Pressure Fluctuations on the Cooling Performance of Advanced Combustor Cooling Concepts in a Reacting Flow
,”
ASME
Paper No. GT2012-68845. 10.1115/GT2012-68845
14.
Ceccherini
,
A.
,
Facchini
,
B.
,
Tarchi
,
L.
, and
Toni
,
L.
,
2009
, “
Combined Effect of Slot Injection, Effusion Array and Dilution Hole on the Cooling Performance of a Real Combustor Liner
,”
ASME
Paper No. GT2009-60047. 10.1115/GT2009-60047
15.
Scrittore
,
J. J.
,
Thole
,
K. A.
, and
Burd
,
S. W.
,
2007
, “
Investigations of Velocity Profiles for Effusion Cooling of a Combustor Liner
,”
ASME J. Turbomach.
,
129
(
3
), pp.
518
526
.10.1115/1.2720492
16.
Martiny
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1995
, “
Full-Coverage Film Cooling Investigations: Adiabatic Wall Temperature and Flow Visualization
,”
ASME
Paper No. 95-WA/HT-4.
17.
Facchini
,
B.
,
Tarchi
,
L.
, and
Toni
,
L.
,
2009
, “
Investigation of Circular and Shaped Effusion Cooling Arrays for Combustor Liner Application—Part 1: Experimental Analysis
,”
ASME
Paper No. GT2009-60037. 10.1115/GT2009-60037
18.
Andreini
,
A.
,
Bianchini
,
C.
,
Ceccherini
,
A.
,
Facchini
,
B.
,
Mangani
,
L.
,
Cinque
,
G.
, and
Colantuoni
,
S.
,
2009
, “
Investigation of Circular and Shaped Effusion Cooling Arrays for Combustor Liner Application—Part 2: Numerical Analysis
,”
ASME
Paper No. GT2009-60038. 10.1115/GT2009-60038
19.
Hoda
,
A.
, and
Acharya
,
S.
,
2000
, “
Predictions of a Film Coolant Jet in Crossflow With Different Turbulence Models
,”
ASME J Turbomach.
,
122
(
3
), pp.
558
569
.10.1115/1.1302322
20.
Harrison
,
K. L.
, and
Bogard
,
D. G.
,
2008
, “
Comparison of RANS Turbulence Models for Prediction of Film Cooling Performance
,”
ASME
Paper No. GT2008-51423. 10.1115/GT2008-51423
21.
Cottin
,
G.
,
Laroche
,
E.
,
Savary
,
N.
, and
Millan
,
P.
,
2011
, “
Modeling of the Heat Flux for Multi-Hole Cooling Applications
,”
ASME
Paper No. GT2011-46330. 10.1115/GT2011-46330
22.
Bergeles
,
G.
,
Gosman
,
A. D.
, and
Launder
,
B. E.
,
1978
, “
The Turbulent Jet in a Cross Stream at Low Injection Rates: A Three-Dimensional Numerical Treatment
,”
J. Numer. Heat Transfer
,
1
(
2
), pp.
217
242
.10.1080/10407787808913373
23.
Azzi
,
A.
, and
Lakehal
,
D.
,
2002
, “
Perspectives in Modeling Film Cooling of Turbine Blades by Transcending Conventional Two-Equation Turbulence Models
,”
ASME J. Turbomach.
,
124
(
3
), pp.
472
484
.10.1115/1.1485294
24.
Holloway
,
D. S.
,
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2005
, “
Computational Study of Jet-in-Crossflow and Film Cooling Using a New Unsteady-Based Turbulence Model
,”
ASME
Paper No. GT2005-68155. 10.1115/GT2005-68155
25.
Azzi
,
A.
, and
Jubran
,
B. A.
,
2003
, “
Numerical Modeling of Film Cooling From Short Length Stream-Wise Injection Holes
,”
J. Heat Mass Transfer
,
39
(
4
), pp.
345
353
.10.1007/s00231-002-0320-0
26.
Lakehal
,
D.
,
Theodoris
,
G. S.
, and
Rodi
,
W.
,
1998
, “
Computation of Film Cooling of a Flat Plate by Lateral Injection From Arrow of Holes
,”
Int. J. Heat Fluid Flow
,
19
(
5
), pp.
418
430
.10.1016/S0142-727X(98)10022-X
27.
Lakehal
,
D.
,
2002
, “
Near-Wall Modeling of Turbulent Convective Heat Transport in Film Cooling of Turbine Blades With the Aid of Direct Numerical Simulation Data
,”
ASME J. Turbomach.
,
124
(
3
), pp.
485
498
.10.1115/1.1482408
28.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
,
1987
, “
Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
177
, pp.
133
166
.10.1017/S0022112087000892
29.
Kern
,
M.
,
Marinov
,
S.
,
Habisreuther
,
P.
,
Zarzalis
,
N.
,
Peschiulli
,
A.
, and
Turrini
,
F.
,
2011
, “
Characteristics of an Ultra-Lean Swirl Combustor Flow by LES and Comparison to Measurements
,”
ASME
Paper No. GT2011-45300. 10.1115/GT2011-45300
30.
Schulz
,
A.
,
2001
, “
Combustor Liner Cooling Technology in Scope of Reduced Pollutant Formation and Rising Thermal Efficiencies
,”
Heat Transfer Gas Turbine Syst.
,
934
, pp.
135
146
.10.1111/j.1749-6632.2001.tb05848.x
31.
Andrei
,
L.
,
Andreini
,
A.
,
Bianchini
,
C.
,
Caciolli
,
G.
,
Facchini
,
B.
,
Mazzei
,
L.
,
Picchi
,
A.
, and
Turrini
,
F.
,
2014
, “
Effusion Cooling Plates for Combustor Liners: Experimental and Numerical Investigations on the Effect of Density Ratio
,”
Energy Procedia
,
45
, pp.
1402
1411
.10.1016/j.egypro.2014.01.147
You do not currently have access to this content.