In this publication, an overview of the current state of wetness modeling at the Institute of Thermal Turbomachinery and Machinery Laboratory (ITSM) is given. For the modeling, an Euler–Euler method implemented in the commercial flow solver Ansys CFX is used. This method is able to take into account the nonequilibrium state of the steam and models the interactions between the gaseous and liquid phases. This paper is the first part of a two-part publication and deals with the numerical validation of wet steam models by means of condensing nozzle and cascade flows. A number of issues with regard to the quality of the computational fluid dynamics (CFD) code and the applied condensation models are addressed comparing the results to measurements. It can be concluded that a calibration of the models is necessary to achieve a satisfying agreement with the experimental results. Moreover, the modeling of the low pressure model steam turbine operated at the ITSM is described focusing on the asymmetric flow field in the last stage caused by the axial–radial diffuser. Different simplified axisymmetric diffuser models are investigated in steady state simulations, and the results and the arising issues for part-load, design-load, and over-load conditions are discussed. Thereafter, a comparison between the equilibrium and nonequilibrium steam modeling approaches is performed and the advantage of the nonequilibrium model is highlighted. The second part of the publication focuses on experimental investigations and compares the numerical results to wetness measurement data. For this purpose, different loads are also considered.

References

References
1.
Moore
,
M. J.
, and
Sieverding
,
C. H.
,
1976
,
Two-Phase Steam Flow in Turbines and Separators
,
Hemisphere Publishing Corp.
,
Washington, DC
.
2.
Schatz
,
M.
, and
Eberle
,
T.
,
2014
, “
Experimental Study of Steam Wetness in a Model Steam Turbine Rig: Presentation of Results and Comparison With Computational Fluid Dynamics Data
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
2
), pp.
129
142
.10.1177/0957650913512313
3.
Eberle
,
T.
,
Schatz
,
M.
,
Starzmann
,
J.
,
Grübel
,
M.
, and
Casey
,
M. V.
,
2014
, “
Experimental Study of the Effects of Temperature Variation on Droplet Size and Wetness Fraction in a Low Pressure Model Steam Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
1
), pp.
97
106
.10.1177/0957650913508119
4.
Starzmann
,
J.
,
Kaluza
,
P.
,
Casey
,
M. V.
, and
Sieverding
,
F.
,
2014
, “
On Kinematic Relaxation and Deposition of Water Droplets in the Last Stages of Low Pressure Steam Turbines
,”
ASME J. Turbomach.
,
136
(
7
), p.
071001
.10.1115/1.4025584
5.
Starzmann
,
J.
,
Casey
,
M.
,
Mayer
,
J. F.
, and
Sieverding
,
F.
,
2014
, “
Wetness Loss Prediction for a Low Pressure Steam Turbine Using CFD
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
2
), pp.
216
231
.10.1177/0957650913513253
6.
Gyarmathy
,
G.
,
1962
, “
Grundlagen einer Theorie der Nassdampfturbine (in German)
,” Doctoral thesis, ETH Zürich, Juris Verlag Zürich, Zürich, Switzerland.
7.
Gerber
,
A. G.
,
Sigg
,
R.
,
Völker
,
L.
,
Casey
,
M. V.
, and
Sürken
,
N.
,
2007
, “
Predictions of Nonequilibrium Phase Transition in a Model Low-Pressure Steam Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
6
), pp.
825
835
.10.1243/09576509JPE456
8.
Gerber
,
A. G.
,
2008
, “
Inhomogeneous Multifluid Model for Prediction of Nonequilibrium Phase Transition and Droplet Dynamics
,”
ASME J. Fluids Eng.
,
130
(
3
), pp.
1
11
.10.1115/1.2844580
9.
Starzmann
,
J.
,
Schatz
,
M.
,
Casey
,
M. V.
,
Mayer
,
J. F.
, and
Sieverding
,
F.
,
2011
, “
Modelling and Validation of Wet Steam Flow in a Low Pressure Steam Turbine
,”
ASME
Paper No. GT2011-45672.10.1115/GT2011-45672
10.
Kantrowitz
,
A.
,
1951
, “
Nucleation in Very Rapid Expansions
,”
J. Chem. Phys.
,
19
(
9
), pp.
1097
1100
.10.1063/1.1748482
11.
Frenkel
,
J.
,
1955
,
Kinetic Theory of Liquids
,
Oxford University
,
Oxford, UK
.
12.
Heiler
,
M.
,
1999
, “
Instationäre Phänomene in homogen/heterogen kondensierenden Düsen- und Turbinenströmungen (in German)
,” Doctoral thesis, University of Karlsruhe, Karlsruhe, Germany.
13.
Young
,
J. B.
,
1982
, “
The Spontaneous Condensation of Steam in Supersonic Nozzles
,”
PhysicoChem. Hydrodyn.
,
3
(
1
), pp.
57
82
.
14.
Starzmann
,
J.
,
Grübel
,
M.
, and
Casey
,
M. V.
,
2012
, “
Modelling of Condensing Steam Flows in Supersonic Nozzles and Steam Turbines With a Commercial Flow Solver
,”
13th Workshop on Two-Phase Flow Predictions
,
Halle (Saale), Germany
, Sept. 17–20, Paper No. 57.
15.
Moses
,
C. A.
, and
Stein
,
G. D.
,
1978
, “
On the Growth of Steam Droplets Formed in a Laval Nozzle Using Both Static Pressure and Light Scattering Measurements
,”
ASME J. Fluids Eng.
,
100
(
3
), pp.
311
322
.10.1115/1.3448672
16.
White
,
A. J.
,
Young
,
J. B.
, and
Walters
,
P. T.
,
1996
, “
Experimental Validation of Condensing Flow Theory for a Stationary Cascade of Steam Turbine Blades
,”
Phil. Trans. R. Soc., A
,
354
(
1704
), pp.
59
88
.10.1098/rsta.1996.0003
17.
Bakhtar
,
F.
,
Young
,
J. B.
,
White
,
A. J.
, and
Simpson
,
A. D.
,
2005
, “
Classical Nucleation Theory and Its Application to Condensing Steam Flow Calculations
,”
Proc. Inst. Mech. Eng., Part C
,
219
(
12
), pp.
1315
1333
.10.1243/095440605X8379
18.
Wróblewski
,
W.
,
Dykas
,
S.
, and
Gepert
,
A.
,
2009
, “
Steam Condensing Flow Modeling in Turbine Channels
,”
Int. J. Multiphase Flow
,
35
(
6
), pp.
498
506
.10.1016/j.ijmultiphaseflow.2009.02.020
19.
Wróblewski
,
W.
,
2013
, private communication, Silesian University of Technology, Gliwice, Poland.
20.
White
,
A. J.
,
1992
, “
Condensation in Steam Turbine Cascades
,” Doctoral thesis, University of Cambridge, Cambridge, UK.
21.
Sigg
,
R.
,
Casey
,
M. V.
, and
Mayer
,
J. F.
,
2008
, “
The Influence of Lean and Sweep in a Low Pressure Steam Turbine: Analysis of Three Stages With a 3D CFD Model
,”
ASME
Paper No. GT2008-50161.10.1115/GT2008-50161
22.
Mayer
,
D.
,
2008
, “
Modellierung und Simulation der Zuströmung des Dampfturbinenprüfstandes (in German)
,” Studienarbeit, University of Stuttgart, Stuttgart, Germany.
23.
Sigg
,
R.
,
Heinz
,
Ch.
,
Casey
,
M. V.
, and
Sürken
,
N.
,
2009
, “
Numerical and Experimental Investigation of a Low Pressure Steam Turbine During Windage
,”
8th European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics
,
Graz, Austria
, Mar. 23–27, pp. 1423–1434.
24.
Völker
,
L.
,
2006
, “
Neue Aspekte der aerodynamischen Gestaltung von Niederdruck-Endstufen-Beschaufelungen (in German)
,” Doctoral thesis, Shaker Verlag, University of Stuttgart, Stuttgart, Germany.
25.
Schatz
,
M.
,
Eberle
,
T.
,
Grübel
,
M.
,
Starzmann
,
J.
,
Vogt
,
D. M.
, and
Sürken
,
N.
,
2014
, “
Two-Phase Flow Modeling and Measurements in Low-Pressure Turbines—Part II: Turbine Wetness Measurement and Comparison to CFD-Predictions
,”
ASME J. Gas Turbines Power
,
137
(
4
), p.
042603
.10.1115/1.4028547
You do not currently have access to this content.