This paper reports the process and computer methodology for a physics-based prediction of overall deformation and local failure modes in cooled turbine airfoils, blade outer air seals, and other turbomachinery parts operating in severe high temperature and high stress environments. The computational analysis work incorporated time-accurate, coupled aerothermal computational fluid dynamics (CFD) with nonlinear deformation thermal-structural finite element model (FEM) with a slip-based constitutive model, evaluated at real engine characteristic mission times, and flight points for part life prediction. The methodology utilizes a fully coupled elastic-viscoplastic model that was based on crystal morphology, and a semi-empirical life prediction model introduced the use of dissipated energy to estimate the remaining part life in terms of cycles to failure. The method was effective for use with three-dimensional FEMs of realistic turbine airfoils using commercial finite element applications. The computationally predicted part life was calibrated and verified against test data for deformation and crack growth.

References

References
1.
Lakshminarayana
,
B.
,
1996
,
Fluid Dynamics and Heat Transfer of Turbomachinery
,
Wiley
,
New York
.
2.
Stouffer
,
D. C.
, and
Dame
,
L. T.
,
1996
,
Inelastic Deformation of Metals
,
Wiley
,
New York
.
3.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis, Inc.
,
New York
.
4.
William
,
D. W.
, and
Leylek
,
J. H.
,
2003
, “
Three-Dimensional Conjugate Heat Transfer Simulation of an Internally-Cooled Gas Turbine Vane
,”
ASME
Paper No. GT2003-38551. 10.1115/GT2003-38551
5.
Martin
,
T. J.
, and
Dulikravich
,
G. S.
,
2002
, “
Analysis and Multi-Disciplinary Optimization of Internal Coolant Networks in Turbine Blades
,”
AIAA J. Propul. Power
,
18
(
4
), pp.
896
906
.10.2514/2.6015
6.
Kelkar
,
K. M.
,
Choudhury
,
D.
, and
Ambrosi
,
M.
,
1991
, “
Numerical Method for the Computation of Conjugate Heat Transfer in Nonorthogonal Boundary-Fitted Coordinates
,”
Numer. Heat Transfer, Part B
,
20
(
1
), pp.
25
40
.10.1080/10407799108944992
7.
Papanicolaou
,
E.
,
Giebert
,
D.
,
Koch
,
R.
, and
Schulz
,
A.
,
2001
, “
A Conservation-Based Approach for Conjugate Heat Transfer in Hot-Gas Ducting Turbomachinery Components
,”
Int. J. Heat Mass Transfer
,
44
(
18
), pp.
3413
3429
.10.1016/S0017-9310(01)00017-5
8.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
9.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
10.
Launder
,
B. E.
, and
Spalding
,
D.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
11.
Shih
,
T. I.-P.
, and
Sultanian
,
B. K.
,
2001
, “
Computations of Internal and Film Cooling
,”
Heat Transfer in Gas Turbines
,
WIT Press
,
Ashurst, UK
, pp. 1785–225.
12.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
,
Eriksen
,
V. L.
, and
Ramsey
,
J. W.
,
1969
, “
Film Cooling Following Injection Through Inclined Circular Tubes
,” NASA, Washington, DC, Report No. NASA CR-72612.
13.
Leylek
,
J. H.
, and
Zerkle
,
R. D.
,
1994
, “
Discrete-Jet Film Cooling; A Comparison of Computational Results With Experiments
,”
ASME J. Turbomach.
,
116
(
3
), pp.
358
368
.10.1115/1.2929422
14.
Staroselsky
,
A.
, and
Cassenti
,
B. N.
,
2011
, “
On Creep, Plasticity, and Fatigue of Single Crystal Superalloy
,”
Int. J. Solids Struct.
,
48
(
13
), pp.
2060
2075
.10.1016/j.ijsolstr.2011.03.011
15.
Staroselsky
,
A.
, and
Cassenti
,
B. N.
,
2010
, “
Combined Rate-Independent Plasticity and Creep Model for Single Crystal
,”
Mech. Mater.
,
42
(
10
), pp.
945
995
.10.1016/j.mechmat.2010.07.005
16.
Kersey
,
R. K.
,
Staroselsky
,
A.
,
Dudzinski
,
D. C.
, and
Genest
,
M.
,
2013
, “
Thermomechanical Fatigue Crack Growth From Laser Drilled Holes in Single Crystal Nickel Based Superalloy
,”
Int. J. Fatigue
,
55
, pp.
183
193
.10.1016/j.ijfatigue.2013.06.006
17.
Ramaglia
,
A. D.
,
2013
, “
Application of a Smooth Approximation of the Schmid's Law to a Single Crystal Gas Turbine Blade
,”
ASME J. Eng. Gas Turbines Power
,
135
(
3
), p.
032101
.10.1115/1.4007785
18.
Kocks
,
U. F.
,
1976
, “
Laws for Work Hardening and Low-Temperature Creep
,”
ASME J. Eng. Mater. Technol.
,
98
(
1
), pp.
76
85
.10.1115/1.3443340
19.
Mughrabi
,
H.
,
1975
, “
Description of the Dislocation Structure After Unidirectional Deformation at Low Temperatures
,”
Constitutive Equations in Plasticity
,
MIT Press
,
Cambridge, MA
, pp.
199
251
.
20.
Zhurkov
,
S. N.
,
1965
, “
Kinetic Concept of the Strength of Solids
,”
Int. J. Fract. Mech.
,
26
(
4
), pp.
295
307
.10.1007/BF00962961
21.
Paris
,
P. C.
,
Gomez
,
M. P.
, and
Anderson
,
W. E.
,
1961
, “
A Rational Analytic Theory of Fatigue
,”
Trend Eng.
,
13
(1), pp.
9
14
.
22.
Neu
,
R. W.
, and
Sehitoglu
,
U.
,
1989
, “
Thermomechanical Fatigue, Oxidation, and Creep: Part II. Life Prediction
,”
Metall. Trans. A
,
20
(
9
), pp.
1769
1783
.10.1007/BF02663208
You do not currently have access to this content.