Gas turbines are designed to follow specific missions and the metal temperature is usually predicted with deterministic methods. However, in the real life, the mission is subjected to strong variations which can affect the thermal response of the components. This paper presents a stochastic analysis of the metal temperature variations during a gas turbine transient. A Monte Carlo method (MCM) with meta-model is used to evaluate the probability distribution of the stator disk temperature. The MCM is applied to a series of computational fluid dynamics (CFD) simulations of a stator well, whose geometry is modified according to the deformations predicted during the engine cycle by a coupled thermomechanical analysis of the metal components. It is shown that even considering a narrow band for the stochastic output, ±σ, the transient thermal gradients can be up to two orders of magnitude greater than those obtained with a standard deterministic analysis. Moreover, a small variation in the tail of the input probability density function (PDF), a rare event, can have serious consequences on the uncertainty level of the temperature. Rare events although inevitable they are not usually considered during the design phase. In this paper, it is shown for the first time that is possible to mitigate their effect, minimizing the maximum standard deviation induced by the tail of the input PDF. The mission optimization reduces the maximum standard deviation by 15% and the mean standard deviation of about 12%. The maximum thermal gradients are also reduced by 10%, although this was not the parameter used as the goal in the optimization study.

References

References
1.
Mirzamoghadam
,
A. V.
, and
Xiao
,
Z.
,
2002
. “
Flow and Heat Transfer in an Industrial Rotor–Stator Rim Sealing Cavity
,”
ASME J. Eng. Gas Turbines Power
,
124
(
1
), pp.
125
132
.10.1115/1.1400754
2.
Montomoli
,
F.
,
Massini
,
M.
,
Maceli
,
N.
,
Cirri
,
M.
,
Lombardi
,
L.
,
Ciani
,
A.
,
D'Ercole
,
M.
, and
De Prosperis
,
R.
,
2010
Interaction of Wheelspace Coolant and Main Flow in a New Aeroderivative Low Pressure Turbine
,”
ASME J. Turbomach.
,
132
(
3
), p.
031013
.10.1115/1.3195036
3.
Nordquist
,
J.
,
Abrahamson
,
S.
,
Wechkin
,
J.
, and
Eaton
,
J.
,
1990
, “
Visualization Studies in Rotating Disk Cavity Flows
,”
ASME J. Turbomach.
,
112
(
2
), pp.
308
310
.10.1115/1.2927656
4.
Pountney
,
O. J.
,
Sangan
,
C. M.
,
Lock
,
G. D.
, and
Owen
,
J.
,
2013
, “
Effect of Ingestion on Temperature of Turbine Disks
,”
ASME J. Turbomach.
,
135
(
5
), p.
051010
.10.1115/1.4007503
5.
Vinod Kumar
,
B. G.
,
Chew
,
J. W.
, and
Hills
,
N. J.
,
2013
, “
Rotating Flow and Heat Transfer in Cylindrical Cavities With Radial Inflow
,”
ASME J. Eng. Gas Turbines Power
,
135
(
3
), p.
032502
.10.1115/1.4007826
6.
Hall
,
E. J.
,
2000
, “
Modular Multi-Fidelity Simulation Methodology for Multiple Spool Turbofan Engines
,” NASA High Performance Computing and Communications Computational Aerosciences Workshop, NASA Ames Research Center, Moffet Field, CA, Feb. 15–17.
7.
Schlüter
,
J. U.
,
Wu
,
X.
,
Kim
,
S.
,
Shankaran
,
S.
,
Alonso
,
J. J.
, and
Pitsch
,
H.
,
2005
, “
A Framework for Coupling Reynolds-Averaged With Large Eddy Simulations for Gas Turbine Applications
,”
ASME J. Fluids Eng.
,
127
(
4
), pp.
608
615
.10.1115/1.1994877
8.
Lapworth
,
L.
,
2007
, “
The Challenges for Aero-Engine CFD
,”
9th Conference on Numerical Methods for Fluid Dynamics
,
ICFD, Reading, UK
, Mar. 26–29.
9.
Constantine
,
P.
,
Doostan
,
A.
, and
Iaccarino
,
G.
,
2009
, “
A Hybrid Collocation/Galerkin Scheme for Convective Heat Transfer Problems With Stochastic Boundary Conditions
,”
Int. J. Numer. Methods Eng.
,
80
(
6–7
), pp.
868
880
.10.1002/nme.2564
10.
Montomoli
,
F.
,
D'Ammaro
,
A.
, and
Uchida
,
S.
,
2013
, “
Uncertainty Quantification and Conjugate Heat Transfer: A Stochastic Analysis
,”
ASME J. Turbomach.
,
135
(
3
), p.
031014
.10.1115/1.4007516
11.
Montomoli
,
F.
,
Salvadori
,
S.
,
Martelli
,
F.
, and
Massini
,
M.
,
2011
, “
Geometrical Uncertainty and Film Cooling: Fillet Radii
,”
ASME J. Turbomach.
,
134
(
1
), p.
011019
.10.1115/1.4003287
12.
Taleb
,
N. N.
,
2004
,
Fooled By Randomness: The Hidden Role of Chance in Life and in the Markets
,
Random House Publisher
,
New York
.
13.
Taleb
,
N. N.
,
2007
,
The Black Swan: The Impact of the Highly Improbable
,
Random House Publisher
,
New York
.
14.
Montomoli
,
F.
, and
Massini
,
M.
,
2013
, “
Gas Turbines and Uncertainty Quantification: Impact of PDF Tails on UQ Predictions, The Black Swan
,”
ASME
Paper No. GT2013-94306. 10.1115/GT2013-94306
15.
AGARD
,
1994
, “
Propulsion and Energetics Panel Working Group 23 on Guide to the Measurement of the Transient Performance of Aircraft Turbine Engines and Components
,” Advisory Group for Aerospace Research and Development, Neuilly-sur-Siene, France, Report No. AR-320.
16.
Meher-Homji
,
C. B.
, and
Gabriles
,
G.
,
1998
, “
Gas Turbines Blades Failures: Causes, Avoidance and Troubleshooting
,”
27th Turbomachinery Symposium
,
Houston, TX
, Sept. 20–24, pp.
129
180
.
17.
Simpson
,
T. W.
,
Lin
,
D. K. J.
, and
Chen
,
W.
,
2001
, “
Sampling Strategies for Computer Experiments: Design and Analysis
,”
Int. J. Reliab. Appl.
,
2
(
3
), pp.
209
240
, available at: http://www.personal.psu.edu/users/j/x/jxz203/lin/Lin_pub/2001_IJRA.pdf.
18.
Amirante
,
D.
,
Hills
,
N. J.
, and
Barnes
,
C. J.
,
2012
, “
Use of Dynamic Meshes for Transient Metal Temperature Prediction
,”
ASME
Paper No. GT2012-68782. 10.1115/GT2012-68782
19.
Amirante
,
D.
,
Hills
,
N. J.
, and
Barnes
,
C. J.
,
2012
, “
A Moving Mesh Algorithm for Aero-Thermo-Mechanical Modelling in Turbomachinery
,”
Int. J. Numer. Methods Fluids
,
70
(
9
), pp.
1118
1138
.10.1002/fld.2734
20.
Armstrong
,
I.
, and
Edmunds
,
T. M.
,
1989
, “
Fully Automatic Analysis in the Industrial Environment
,”
2nd International Conference on Quality Assurance and Standards, NAFEMS
, Stratford-upon-Avon, UK, pp.
74
84
.
21.
Moinier
,
P.
,
1999
, “
Algorithm Developments for an Unstructured Viscous Flow Solver
,” Ph.D. thesis, Oxford University, Oxford, UK.
22.
Crumpton
,
P. I.
, and
Giles
,
M. B.
,
2002
, “
Oplus Fortran 77 Library
,” available at: http://www.comlab.ox.ac.uk
23.
Hills
,
N. J.
,
2007
, “
Achieving High Parallel Performance for Unsteady Turbomachinery Code
,”
Aeronaut. J.
,
111
(
1117
), pp.
185
193
, available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-34147092549amp;partnerID=40amp;md5=af981bd4e254c1eb3fc31c44dbaf5b47.
24.
Carnevale
,
M.
,
Montomoli
,
F.
,
D'Ammaro
,
A.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2013
, “
Uncertainty Quantification: A Stochastic Method for Heat Transfer Prediction Using LES
,”
ASME J. Turbomach.
,
135
(
5
), p.
051021
.10.1115/1.4007836
25.
Towashiraporn
,
P.
,
Dueñas-Osorio
,
L.
,
Craig
,
J. I.
, and
Goodno
,
B. J.
,
2008
, “
An Application of the Response Surface Metamodel in Building Seismic Fragility Estimation
,”
The World Conference on Earthquake Engineering
,
Beijing, China
, Oct. 12–17.
26.
Bui-Thanh
,
T.
,
Willcox
,
K.
, and
Ghattas
,
O.
,
2007
, “
Model Reduction for Large-Scale Systems With High-Dimensional Parametric Input Space
,”
AIAA
Paper No. 2007-2049. 10.2514/6.2007-2049
27.
Booker
,
A. J.
,
1998
, “
Design and Analysis of Computer Experiments
,”
AIAA
Paper No. 1998-4757. 10.2514/6.1998-4757
You do not currently have access to this content.