The present work deals with the thermo-economic analysis of an innovative combined power cycle consisting of a molten-salt solar tower power plant with storage supported by additional heat provided from the exhaust of a topping gas-turbine unit. A detailed dynamic model has been elaborated using an in house simulation tool that simultaneously encompasses meteorological, demand and price data. A wide range of possible designs are evaluated in order to show the trade-offs between the objectives of achieving sustainable and economically competitive designs. Results show that optimal designs of the novel concept are a promising cost-effective hybrid option that can successfully fulfill both the roles of a gas peaker plant and a baseload solar power plant in a more effective manner. Moreover, designs are also compared against conventional combined cycle gas turbine (CCGT) power plants and it is shown that, under specific peaking operating strategies (P-OSs), the innovative concept cannot only perform better from an environmental standpoint but also economically.

References

References
1.
International Renewable Energy Agency,
2012
,
Concentrating Solar Power, Renewable Energy Technologies: Cost Analysis Series
, Vol.
I
:
Power Sector, IRENA Secretariat
,
Abu Dhabi, UAE
.
2.
CSP World,
2013
, “
CSP Facts and Figures
,” CSP World, Seville, Spain, available at: http://www.csp-world.com/resources/csp-facts-figures
3.
Philibert
,
C.
,
Frankl
,
P.
, and
Dobrotkova
,
Z.
,
2010
, “
Concentrating Solar Power: Technology Roadmap
,”
International Energy Agency
,
Paris, Technology Roadmap Report
.
4.
International Energy Agency
,
2010
,
Projected Costs of Generating Electricity
,
IEA/OECD/NEA Press
,
Paris, France
.
5.
Dersch
,
J.
,
Geyer
,
M.
,
Herrmann
,
U.
,
Jones
,
S.
,
Kelly
,
B.
,
Kistner
,
R.
,
Ortmanns
,
W.
,
Pitz-Paal
,
R.
, and
Price
,
H.
,
2004
, “
Trough Integration Into Power Plants—A Study on the Performance and Economy of Integrated Solar Combined Cycle Systems
,”
Energy
,
29
(
5–6
), pp.
947
959
.10.1016/S0360-5442(03)00199-3
6.
Spelling
,
J.
,
Laumert
,
B.
, and
Fransson
,
T.
,
2012
, “
Optimal Gas-Turbine Design for Hybrid Solar Power Plant Operation
,”
ASME J. Eng. Gas Turbines Power
,
134
(
9
), p.
092301
.10.1115/1.4006986
7.
Phil
,
E.
,
Spelling
,
J.
, and
Johnsson
,
F.
,
2014
, “
Thermo-Economic Optimization of Hybridization Options for Solar Retrofitting of Combined Cycle Power Plants
,”
ASME J. Sol. Energy Eng.
,
136
(
2
), p.
021001
.10.1115/1.4024922
8.
Peterseim
,
J.
,
White
,
S.
,
Tadros
,
A.
, and
Hellwig
,
U.
,
2013
, “
Concentrated Solar Power Hybrid Plants, Which Technologies are Best Suited for Hybridization?,
Renewable Energy
,
57
, pp.
520
532
.10.1016/j.renene.2013.02.014
9.
Jamel
,
M.
,
Abd Rahman
,
A.
, and
Shamsuddin
,
A.
,
2013
, “
Advances in the Integration of Solar Thermal Energy With Conventional and Non-Conventional Power Plants
,”
Renewable Sustainable Energy Rev.
,
20
, pp.
71
81
.10.1016/j.rser.2012.10.027
10.
Tsikalakis
,
A.
,
Tomtsi
,
T.
,
Hatziargyriou
,
N. D.
,
Poullikkas
,
A.
,
Malamatenios
,
Ch.
,
Giakoumelos
,
E.
,
Cherkaoui Jaouad
,
O.
,
Chenak
,
A.
,
Fayek
,
A.
,
Matar
,
T.
, and
Yasin
,
A.
,
2011
, “
Review of Best Practices of Solar Electricity Resources Applications in Selected Middle East and North Africa (MENA) Countries
,”
Renewable Sustainable Energy Rev.
,
15
(
6
), pp.
2838
2849
.10.1016/j.rser.2011.03.005
11.
Behar
,
O.
,
Kellaf
,
A.
,
Mohamedi
,
K.
, and
Belhamel
,
M.
, “
Instantaneous Performance of the First Integrated Solar Combined Cycle System in Algeria
,”
Energy Procedia
,
6
, pp.
185
193
.10.1016/j.egypro.2011.05.022
12.
Denholm
,
P.
, and
Hand
,
M.
,
2011
, “
Grid Flexibility and Storage Required to Achieve Very High Penetration of Variable Renewable Electricity
,”
Energy Policy
,
39
(
3
), pp.
1817
1830
.10.1016/j.enpol.2011.01.019
13.
Madaeni
,
S.
,
Sioshansi
,
R.
, and
Denholm
,
P.
,
2012
, “
How Thermal Energy Storage Enhances the Economic Viability of Concentrating Solar Power
,”
Proc. IEEE
,
100
(
2
), pp.
335
347
.10.1109/JPROC.2011.2144950
14.
Sioshansi
,
R.
, and
Denholm
,
P.
,
2010
, “
The Value of Concentrating Solar Power and Thermal Energy Storage
,”
IEEE Trans. Sustainable Energy
,
1
(
3
), pp.
173
183
.10.1109/TSTE.2010.2052078
15.
Guédez
,
R.
,
Spelling
,
J.
,
Laumert
,
B.
, and
Fransson
,
T.
,
2014
, “
Optimization of Thermal Energy Storage Integration Strategies for Peak Power Production by Concentrating Solar Power Plants
,”
Energy Procedia
,
49
, pp.
1642
1651
.10.1016/j.egypro.2014.03.173
16.
Guédez
,
R.
,
Spelling
,
J.
,
Laumert
,
B.
, and
Fransson
,
T.
,
2014
, “
Reducing the Number of Turbine Starts in Concentrating Solar Power Plants Through the Integration of Thermal Energy Storage
,”
ASME J. Sol. Energy Eng.
,
137
(
1
), p.
011003
.10.1115/1.4028004
17.
Guédez
,
R.
,
Spelling
,
J.
, and
Laumert
,
B.
,
2013
, “
Thermoeconomic Optimization of Solar Thermal Power Plants With Storage in High-Penetration Renewable Electricity Markets
,”
ISES Solar World Congress
, Cancun, Mexico, Nov. 3–7.
18.
Rovira
,
A.
,
Montes
,
M.
,
Valera
,
F.
, and
Gil
,
M.
,
2013
, “
Comparison of Heat Transfer Fluid and Direct Steam Generation Technologies for Integrated Solar Combined Cycles
,”
J. Appl. Therm. Eng.
,
52
(
2
), pp.
264
274
.10.1016/j.applthermaleng.2012.12.008
19.
Spelling
,
J.
,
Guédez
,
R.
, and
Laumert
,
B.
,
2012
, “
The Value of Storage in Hybrid Solar Gas-Turbine Power Plants
,”
SolarPACES International Conference
, Marrakech, Morocco, Sept. 11–14.
20.
Fricker
,
H. W.
,
2004
, “
Regenerative Thermal Storage in Atmospheric Air System Solar Power Plants
,”
Energy
,
29
(
5–6
), pp.
871
881
.10.1016/S0360-5442(03)00192-0
21.
Yogev
,
R.
, and
Kribus
,
A.
,
2013
, “
Operation Strategies and Performance of Solar Thermal Power Plants Operating From PCM Storage
,”
Sol. Energy
,
95
, pp.
170
180
.10.1016/j.solener.2013.06.012
22.
Bayón
,
R.
,
Rojas
,
E.
,
Valenzuela
,
L.
,
Zarza
,
E.
, and
León
,
J.
,
2010
, “
Analysis of the Experimental Behavior of a 100 kWth Latent Heat Storage System for Direct Steam Generation in Solar Thermal Power Plants
,”
J. Appl. Therm. Eng.
,
30
(
17–18
), pp.
2643
2651
.10.1016/j.applthermaleng.2010.07.011
23.
Burgaleta
,
J.
,
Arias
,
S.
, and
Ramírez
,
D.
,
2012
, “
GEMASOLAR, the First Tower Thermosolar Commercial Plant With Molten Salt Storage
,”
SolarPACES 2012 International Conference
, Marrakech, Morocco, Sept. 11–14.
24.
Solar Energy Laboratory
2007
, “
TRNSYS 16: A Transient System Simulation Program
,”
University of Wisconsin–Madison
,
Madison, WI
.
25.
SoDa Solar Radiation Data,
2013
, “
Time Series of Solar Radiation Data
,” www.soda-is.com
26.
Operador del Mercado Ibérico de Energía, Polo Español S. A. (OMIE),
2013
, “
Annual Report from Market Results 2012
,”
OMIE
,
Madrid, Spain
.
27.
Siemens Industrial Turbomachinery AB,
2013
, “
SGT-800 Industrial Gas Turbine, Technical Brochure
,”
Siemens
,
Finspång, Sweden
.
28.
Staine
,
F.
,
1995
, “
Intégration Énergetique des Procedes Industriels par la Method du Pincement Etendue aux Facteurs Exergetiques
,” Ph.D. thesis #1318, Swiss Federal Technology Institute, Lausanne, Switzerland.
29.
Schwarzbözl
,
P.
,
2006
,
STEC: A TRNSYS Model Library for Solar Thermal Electric Components
, Deutsches Zentrum für Luft und Raumfahrt e.V, Köln, Germany, Reference Manual Release 3.0.
30.
Gilman
,
P.
,
Blair
,
N.
,
Mehos
,
M.
,
Christensen
,
C.
, and
Janzou
,
S.
,
2008
, “
Solar Advisor Model User Guide for Version 2.0
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-670-43704.
31.
Jones
,
S.
,
Pitz-Paal
,
R.
,
Schwarzbözl
,
P.
,
Blair
,
N.
, and
Cable
,
R.
,
2001
, “
TRNSYS Modeling of the SEGS VI Parabolic Trough Solar Electric Generating System
,”
Proceedings of the Solar Forum 2001—Solar Energy: The Power to Choose
, Washington, DC, Apr. 21–25.
32.
Cooke
,
D.
,
1983
, “
Modeling of Off-Design Multistage Turbine Pressures by Stodola's Ellipse
,”
Energy Incorporated PEPSE User's Group Meeting
,
Richmond, VA
, Nov. 2–3.
33.
Gas Turbine World,
2012
,
Gas Turbine World 2012 GTW Handbook—Project Planning, Pricing, Engineering, Construction and Operation
,
Vol. 29, Pequot Publishing Inc.
,
Fairfield, CT
.
34.
Turchi
,
C.
, and
Wagner
,
M.
,
2012
, “
Power Tower Reference Plant for Cost Modelling With the System Advisor Model (SAM)
,”
World Renewable Energy Forum
, Denver, CO, May 13–17, NREL Report No. CP-5500-54638.
35.
WorleyParsons Group,
2009
, “
CSP Parabolic Trough Plant Cost Assessment
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL-0-LS-019-0001.
36.
ESTELA,
2010
, “
Solar Thermal Electricity 2025: Clean Electricity on Demand: Attractive STE Cost Stabilize Energy Production
,” A. T. Kearney, Inc., Düsseldorf, Germany, Roadmap Report.
37.
EUROSTAT,
2013
, “
Electricity and Natural Gas Price Statistics 2012
,” European Commission, Luxemburg, Luxemburg, Statistical Report, available at: http://epp.eurostat.ec.europa.eu/statistics_explained/
38.
Spelling
,
J.
,
2013
, “
Hybrid Solar Gas-Turbine Power Plants—A Thermoeconomic Analysis
,” Ph.D. thesis in Energy Technology, KTH, Stockholm, Sweden.
39.
Birol
,
F.
,
2013
, “
Key Findings of World Energy Outlook 2013
,”
International Energy Agency
,
Paris, France
, annual report.
You do not currently have access to this content.