Combustion noise and thermo-acoustic instabilities are of primary importance in highly critical applications such as rocket propulsion systems, power generation, and jet propulsion engines. Mechanisms for combustion instabilities are extremely complex because they often involve interactions among several different physical phenomena such as unsteady flame propagation leading to unsteady flow field, acoustic wave propagation, natural and forced hydrodynamic instabilities, etc. In the past, we have utilized porous inert media (PIM) to mitigate combustion noise and thermo-acoustic instabilities in both lean premixed (LPM) and lean direct injection (LDI) combustion systems. While these studies demonstrated the efficacy of the PIM concept to mitigate noise and thermo-acoustic instabilities, the actual mechanisms involved have not been understood. The present study utilizes time-resolved particle image velocimetry (PIV) to measure the turbulent flow field in a nonreacting swirl-stabilized combustor without and with PIM. Although the flow field inside the annulus of the PIM cannot be observed, measurements immediately downstream of the PIM provide insight into the turbulent structures. Results are analyzed using the proper orthogonal decomposition (POD) method and show that the PIM alters the flow field in an advantageous manner by modifying the turbulence structures and eliminating the corner recirculation zones and precessing vortex core (PVC), which would ultimately affect the acoustic behavior in a favorable manner.

References

References
1.
Sequera
,
D.
, and
Agrawal
,
A. K.
,
2012
, “
Passive Control of Noise and Instability in a Swirl-Stabilized Combustor With the Use of High-Strength Porous Insert
,”
ASME J Eng. Gas. Turbines Power
,
134
(
5
), p.
051505
.10.1115/1.4004740
2.
Putnam
,
A.
,
1971
,
Combustion Driven Oscillations in Industry
,
Elsevier
,
New York
.
3.
Strahle
,
W. C.
,
1978
, “
Combustion Noise
,”
Prog. Energy Combust. Sci.
,
4
(3)
, pp.
157
176
.10.1016/0360-1285(78)90002-3
4.
Lieuwen
,
T. C.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University
,
New York
.
5.
Rayleigh
,
J. W. S.
, and
Lindsay
,
R. B.
,
1945
,
The Theory of Sound
,
Dover Publications
,
New York
.
6.
Sequera
,
D.
, and
Agrawal
,
A. K.
,
2009
, “
Numerical Simulations of Swirl-Stabilized Combustion Coupled With Porous Inert Medium
,”
6th U.S. National Combustion Meeting
, Combustion Institute Central States Section, Ann Arbor MI, May 17–20, Paper No. 11C3.
7.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms and Modeling
, American Institute of Aeronautics and Astronautics, Reston, VA.
8.
McManus
,
K. R.
,
Poinsot
,
T.
, and
Candel
,
S. M.
,
1993
, “
A Review of Active Control of Combustion Instabilities
,”
Prog. Energy Combust. Sci.
,
19
(
1
), pp.
1
29
.10.1016/0360-1285(93)90020-F
9.
Schadow
,
K. C.
,
Gutmark
,
E.
,
Wilson
,
K. J.
, and
Smith
,
R. A.
,
1990
, “
Multistep Dump Combustor Design to Reduce Combustion Instabilities
,”
J. Propul. Power
,
6
(
4
), pp.
407
411
.10.2514/3.25450
10.
Lieuwen
,
T.
,
2003
, “
Modeling Premixed Combustion-Acoustic Wave Interactions: A Review
,”
J. Propul. Power
,
19
(
5
), pp.
765
781
.10.2514/2.6193
11.
O'Connor
,
J.
, and
Lieuwen
,
T.
,
2012
, “
Recirculation Zone Dynamics of a Transversely Excited Swirl Flow and Flame
,”
Phys. Fluids
,
24
(
7
), p.
075107
.10.1063/1.4731300
12.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.10.1016/j.pecs.2009.01.002
13.
Renard
,
P.
,
Thévenin
,
D.
,
Rolon
,
J. C.
, and
Candel
,
S.
,
2000
, “
Dynamics of Flame/Vortex Interactions
,”
Prog. Energy Combust. Sci.
,
26
(
3
), pp.
225
282
.10.1016/S0360-1285(00)00002-2
14.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
93
161
.10.1016/j.pecs.2005.10.002
15.
Schefer
,
R. W.
,
Wicksall
,
D. M.
, and
Agrawal
,
A. K.
,
2002
, “
Combustion of Hydrogen-Enriched Methane in a Lean Premixed Swirl-Stabilized Burner
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
843
851
.10.1016/S1540-7489(02)80108-0
16.
Wicksall
,
D. M.
, and
Agrawal
,
A. K.
,
2007
, “
Acoustics Measurements in a Lean Premixed Combustor Operated on Hydrogen/Hydrocarbon Fuel Mixtures
,”
Int. J. Hydrogen Energy
,
32
(
8
), pp.
1103
1112
.10.1016/j.ijhydene.2006.07.008
17.
Wicksall
,
D. M.
,
Agrawal
,
A. K.
,
Schefer
,
R. W.
, and
Keller
,
J. O.
,
2005
, “
The Interaction of Flame and Flow Field in a Lean Premixed Swirl-Stabilized Combustor Operated on H2/CH4/Air
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
2875
2883
.10.1016/j.proci.2004.07.021
18.
Wicksall
,
D. M.
,
Agrawal
,
A. K.
,
Schefer
,
R. W.
, and
Keller
,
J. O.
,
2005
, “
Influence of Hydrogen Addition on Flow Structure in Enclosed Swirling Methane Flame
,”
AIAA J. Propul. Power
,
21
(1)
, pp.
16
24
.10.2514/1.4235
19.
O'Connor
,
J.
, and
Lieuwen
,
T.
,
2011
, “
Disturbance Field Characteristics of a Transversely Excited Burner
,”
Combust. Sci. Technol.
,
183
(
5
), pp.
427
443
.10.1080/00102202.2010.529478
20.
Steinberg
,
A. M.
,
Arndt
,
C. M.
, and
Meier
,
W.
,
2013
, “
Parametric Study of Vortex Structures and Their Dynamics in Swirl-Stabilized Combustion
,”
Proc. Combust. Inst.
,
34
(2)
, pp.
3117
3125
.10.1016/j.proci.2012.05.015
21.
Caux-Brisebois
,
V.
,
Steinberg
,
A. M.
,
Arndt
,
C. M.
, and
Meier
,
W.
,
2013
, “
Thermoacoustic Coupling in Swirl-Stabilized Flames With Helical Vortices
,”
49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
, San Jose, CA, July 14–17, Paer No. 2013-3650.10.2514/6.2013-3650
22.
Yi
,
T. X.
, and
Santavicca
,
D. A.
,
2012
, “
Combustion Instability and Flame Structure of Turbulent Swirl-Stabilized Liquid-Fueled Combustion
,”
J. Propul. Power
,
28
(
5
), pp.
1000
1014
.10.2514/1.B34438
23.
Jones
,
C. M.
,
Lee
,
J. G.
, and
Santavicca
,
D. A.
,
1999
, “
Closed-Loop Active Control of Combustion Instabilities Using Subharmonic Secondary Fuel Injection
,”
J. Propul. Power
,
15
(
4
), pp.
584
590
.10.2514/2.5467
24.
Lee
,
J. Y.
,
Lubarsky
,
E.
, and
Zinn
,
B. T.
,
2005
, “
“Slow” Active Control of Combustion Instabilities by Modification of Liquid Fuel Spray Properties
,”
Proc. Combust. Inst.
,
30
(2)
, pp.
1757
1764
.10.1016/j.proci.2004.08.206
25.
Candel
,
S. M.
,
1992
, “
Combustion Instabilities Coupled by Pressure Waves and Their Active Control
,”
Symp. (Int.) Combust.
,
24
(1)
, pp.
1277
1296
.10.1016/S0082-0784(06)80150-5
26.
Coker
,
A.
,
Neumeier
,
Y.
,
Lieuwen
,
T.
,
Zinn
,
B. T.
, and
Menon
,
S.
,
2003
, “
Studies of Active Instability Control Effectiveness in a High Pressure, Liquid Fueled Combustor
,”
41st AIAA Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 6–9,
AIAA
Paper No. 2003-1009.10.2514/6.2003-1009
27.
Agrawal
,
A. K.
, and
Vijaykant
,
S.
,
2012
, “
Passive Noise Attenuation System
,” U.S. Patent No. 8,109,362.
28.
Marbach
,
T. L.
, and
Agrawal
,
A. K.
,
2005
, “
Experimental Study of Surface and Interior Combustion Using Composite Porous Inert Media
,”
ASME J Eng. Gas Turbines Power
,
127
(
2
), pp.
307
313
.10.1115/1.1789516
29.
Zimont
,
V. L.
,
2000
, “
Gas Premixed Combustion at High Turbulence. Turbulent Flame Closure Combustion Model
,”
Exp. Therm. Fluid Sci.
,
21
(
1–3
), pp.
179
186
.10.1016/S0894-1777(99)00069-2
30.
Williams
,
L.
, and
Agrawal
,
A.
,
2012
, “
Acoustic Effects of Porous Inert Media on Lean Premixed Combustion at Elevated Pressures
,”
AIAA
Paper No. 2012-0207.10.2514/6.2012-207
31.
Smith
,
Z.
,
2011
,
Passive Control of Combustion Noise and Thermo-Acoustic Instability With Porous Inert Media
, University of Alabama, Tuscaloosa, AL.
32.
Borsuk
,
A.
,
Meadows
,
J.
,
Williams
,
J.
, and
Agrawal
,
A. K.
,
2012
, “
The Effect on Swirler Geometry and Swirl Number on Passive Control of Combustion Noise and Instability
,”
ASME
Paper No. GT2012-69668.10.1115/GT2012-69668
33.
Meadows
,
J.
, and
Agrawal
,
A. K.
, “
Porous Inserts for Passive Control of Combustion Noise in Liquid Fuel Combustion
,”
Combust. Sci. Technol.
(submitted).
34.
Holmes
,
P.
,
Lumley
,
J. L.
, and
Berkooz
,
G.
,
1996
,
Turbulence, Coherent Structures, Dynamical Systems, and Symmetry
,
Cambridge University Press
,
New York
.
35.
Lumley
,
J. L.
,
1967
, “
The Structure of Inhomogeneous Turbulent Flows
,” Atmospheric Turbulence and Radio Propagation, A. M. Yaglom and V. I. Tatarski, eds., Nauka, Moskow, pp.
166
178
.
36.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annual Rev. Fluid Mech.
,
25
(
1
), p.
539
.10.1146/annurev.fl.25.010193.002543
37.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures. I—Coherent Structures. II—Symmetries and Transformations. III—Dynamics and Scaling
,”
Q. Appl. Math.
,
45
(3), pp.
561
571
.
38.
Strang
,
G.
,
1976
,
Linear Algebra and Its Applications Academic
,
Cengage Learning
,
New York
.
You do not currently have access to this content.