The ingress of hot gas through the rim seal of a gas turbine depends on the pressure difference between the mainstream flow in the turbine annulus and that in the wheel-space radially inward of the rim seal. In this paper, a previously published orifice model is modified so that the sealing effectiveness εc determined from concentration measurements in a rig could be used to determine εp, the effectiveness determined from pressure measurements in an engine. It is assumed that there is a hypothetical “sweet spot” on the vane platform where the measured pressures would ensure that the calculated value of εp equals εc, the value determined from concentration measurements. Experimental measurements for a radial-clearance seal show that, as predicted, the hypothetical pressure difference at the sweet spot is linearly related to the pressure difference measured at an arbitrary location on the vane platform. There is good agreement between the values of εp determined using the theoretical model and values of εc determined from concentration measurements. Supporting computations, using a 3D steady computational fluid dynamics (CFD) code, show that the axial location of the sweet spot is very close to the upstream edge of the seal clearance. It is shown how parameters obtained from measurements of pressure and concentration in a rig could, in principle, be used to calculate the sealing effectiveness in an engine.

References

References
1.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals—Part I: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031005
.10.1115/1.4001177
2.
Owen
,
J. M.
,
2011
, “
Prediction of Ingestion Through Turbine Rim Seals—Part II: Externally Induced and Combined Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031006
.10.1115/1.4001178
3.
Wang
,
C. Z.
,
Johnson
,
B. V.
,
Cloud
,
D. F.
,
Paolillo
,
R. E.
,
Vashist
,
T. K.
, and
Roy
,
R. P.
,
2006
, “
Rim Seal Ingestion Characteristics for Axial Gap Rim Seals in a Closely-Spaced Turbine Stage From a Numerical Simulation
,”
ASME
Paper No. GT2006-90965.10.1115/GT2006-90965
4.
Palafox
,
P.
,
Ding
,
Z.
,
Bailey
,
J.
,
Vanduser
,
T.
,
Kirtley
,
K.
,
Moore
,
K.
, and
Chupp
,
R.
,
2013
, “
A New 1.5-Stage Turbine Wheelspace Hot Gas Ingestion Rig (HGIR)—Part I: Experimental Test Vehicle, Measurement Capability and Baseline Results
,”
ASME
Paper No. GT2013-96020.10.1115/GT2013-96020
5.
Ding
,
Z.
,
Palafox
,
P.
,
Moore
,
K.
,
Chupp
,
R.
, and
Kirtley
,
K.
,
2013
, “
A New 1.5-Stage Wheelspace Hot Gas Ingestion Rig (HGIR)—Part II: CFD Modeling and Validation
,”
ASME
Paper No. GT2013-96021.10.1115/GT2013-96021
6.
Gentilhomme
,
O.
,
Hills
,
N. J.
, and
Turner
,
A. B.
,
2003
, “
Measurement and Analysis of Ingestion Through a Turbine Rim Seal
,”
ASME J. Turbomach.
,
125
(
3
), pp.
505
512
.10.1115/1.1556411
7.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part 3: Single and Double Seals
,”
ASME J. Turbomach.
,
135
(
5
), p.
051011
.10.1115/1.4007504
8.
Zhou
,
D. W.
,
Roy
,
R. P.
,
Wang
,
C. Z.
, and
Glahn
,
J. A.
,
2011
, “
Main Gas Ingestion in a Turbine Stage for Three Rim Cavity Configurations
,”
ASME J. Turbomach.
,
133
(
3
), p.
031023
.10.1115/1.4002423
9.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems: Part 3: The Effect of Non-Axisymmetric External Flow on Seal Performance
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
113
117
.10.1016/0142-727X(88)90062-8
10.
Green
,
T.
, and
Turner
,
A. B.
,
1994
, “
Ingestion Into the Upstream Wheelspace of an Axial Turbine Stage
,”
ASME J. Turbomach.
,
116
(
2
), pp.
327
332
.10.1115/1.2928368
11.
Bohn
,
D.
,
Rudzinski
,
B.
,
Sürken
,
N.
, and
Gärtner
,
W.
,
2000
, “
Experimental and Numerical Investigation of the Influence of Rotor Blades on Hot Gas Ingestion Into the Upstream Cavity of an Axial Turbine Stage
,”
ASME
Paper No. 2000-GT-0284.10.1115/2000-GT-0284
12.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Teuber
,
R.
,
Pountney
,
O. J.
,
Owen
,
J. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals: Part 4—Off-Design Conditions
,”
ASME
Paper No. GT2013-94147.10.1115/GT2013-94147
13.
Johnson
,
B. V.
,
Jakoby
,
R.
,
Bohn
,
D. E.
, and
Cunat
,
D.
,
2006
, “
A Method for Estimating the Influence of Time-Dependent Vane and Blade Pressure Fields on Turbine Rim Seal Ingestion
,”
ASME
Paper No. GT2006-90853.10.1115/GT2006-90853
14.
Johnson
,
B. V.
,
Wang
,
C.-Z.
, and
Roy
,
P. R.
,
2008
, “
A Rim Seal Orifice Model With Two Cds and Effect of Swirl in Seals
,”
ASME
Paper No. GT2008-50650.10.1115/GT2008-50650
15.
Roy
,
R. P.
,
Zhou
,
D. W.
,
Ganesan
,
S.
,
Wang
,
C.-Z.
,
Paolillo
,
R. E.
, and
Johnson
,
B. V.
,
2007
, “
The Flow Field and Main Gas Ingestion in a Rotor-Stator Cavity
,”
ASME
Paper No. GT2007-27671.10.1115/GT2007-27671
16.
Chew
,
J. W.
,
Green
,
T.
, and
Turner
,
A. B.
,
1994
, “
Rim Sealing of Rotor-Stator Wheelspaces in the Presence of External Flow
,”
ASME
Paper No. 94-GT-126.
17.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part I: Externally-Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021012
.10.1115/1.4006609
18.
Zhou
,
K.
,
Wood
,
S. N.
, and
Owen
,
J. M.
,
2013
, “
Statistical and Theoretical Models of Ingestion Through Turbine Rim Seals
,”
ASME J. Turbomach.
,
135
(
2
), p.
021014
.10.1115/1.4006601
19.
Owen
,
J. M.
,
Zhou
,
K.
,
Pountney
,
O. J.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2012
, “
Prediction of Ingress Through Turbine Rim Seals—Part 1: Externally-Induced Ingress
,”
ASME J. Turbomach.
,
134
(
3
), p.
031012
.10.1115/1.4003070
20.
Childs
,
P. R. N.
,
2010
,
Rotating Flow
,
Butterworth-Heinemann
,
Oxford
, UK.
21.
Bohn
,
D.
,
Johann
,
E.
, and
Kruger
,
U.
,
1995
, “
Experimental and Numerical Investigations of Aerodynamic Aspects of Hot Gas Ingestion in Rotor-Stator Systems With Superposed Cooling Mass Flow
,”
ASME
Paper No. 95-GT-143.
22.
Sangan
,
C. M.
,
Lalwani
,
Y.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals: Part 5—Fluid Dynamics of Wheel-Space
,”
ASME
Paper No. GT2013-94148.10.1115/GT2013-94148
23.
Teuber
,
R.
,
Wilson
,
M.
,
Lock
,
G. D.
,
Owen
,
J. M.
,
Li
,
Y. S.
, and
Maltson
,
J. D.
,
2012
, “
Computational Extrapolation of Turbine Sealing Effectiveness From Test Rig to Engine Conditions
,”
ASME
Paper No. GT2012-68490.10.1115/GT2012-68490
You do not currently have access to this content.