An extensive experimental work for Pyroceram™ 9606 glass–ceramic was conducted to determine static fatigue at ambient temperature in distilled water. This work was an extension and companion of the previous work conducted in dynamic fatigue. Four different applied stresses ranging from 120 to 170 MPa was incorporated with a total of 20–23 test specimens used at each of four applied stresses. The slow crack growth (SCG) parameters n and D were found to be n = 19 and D = 45 with a coefficient of correlation of rcoef = 0.9653. The Weibull modulus of time to failure was in a range of msf = 1.6–1.9 with an average of msf = 1.7 ± 0.2. A life prediction using the previously determined dynamic fatigue data was in excellent agreement with the static fatigue data. The life prediction approach was also applied to advanced monolithic ceramics and ceramic matrix composites (CMCs) based on their dynamic and static fatigue data determined at elevated temperatures. All of these results indicated that a SCG mechanism governed by a power-law crack growth formulation was operative, a commonality of SCG in these materials systems.

References

References
1.
Choi
,
S. R.
,
Nemeth
,
N. N.
, and
Gyekenyesi
,
J. P.
,
2005
, “
Exponential Slow Crack Growth of Glass and Advanced Ceramics—Dynamic Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
,
28
(
5
), pp.
489
497
.10.1111/j.1460-2695.2005.00890.x
2.
Choi
,
S. R.
,
Nemeth
,
N. N.
, and
Gyekenyesi
,
J. P.
,
2005
, “
Slow Crack Growth of Brittle Materials With Exponential Crack-Velocity Formulation—Static Fatigue
,”
J. Mater. Sci.
,
40
(
7
), pp.
1647
1654
.10.1007/s10853-005-0665-0
3.
Choi
,
S. R.
,
Nemeth
,
N. N.
, and
Gyekenyesi
,
J. P.
,
2006
, “
Slow Crack Growth of Brittle Materials With Exponential Crack Velocity Under Cyclic Fatigue Loading
,”
Int. J. Fatigue
,
28
(
2
), pp.
164
172
.10.1016/j.ijfatigue.2005.03.007
4.
ASTM C 1368
,
2013
, “
Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress-Rate Flexural Testing at Ambient Temperature
,”
Annual Book of ASTM Standards
, Vol.
15.01
,
ASTM
,
West Conshohocken, PA
.
5.
ASTM C 1465
,
2013
, “
Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress-Rate Flexural Testing at Elevated Temperature
,”
Annual Book of ASTM Standards
, Vol.
15.01
,
ASTM
,
West Conshohocken, PA
.
6.
ASTM C 1576
,
2013
, “
Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress Flexural Testing at Ambient Temperature
,”
Annual Book of ASTM Standards
, Vol.
15.01
,
ASTM
,
West Conshohocken, PA
.
7.
Choi
,
S. R.
, and
Gyekenyesi
,
J. P.
,
2003
, “
Results of Mechanical Testing for Pyroceram™ Glass-Ceramic
,” National Aeronautics and Space Administration, Glenn Research Center, Cleveland, OH, Report No. NASA/TM-2003-212487.
8.
Choi
,
S. R.
, and
Gyekenyesi
,
J. P.
,
2005
, “
Load-Rate Dependency of Ultimate Tensile Strength in Ceramic Matrix Composites at Elevated Temperatures
,”
Int. J. Fatigue
,
27
(
5
), pp.
503
510
.10.1016/j.ijfatigue.2004.10.001
9.
Choi
,
S. R.
,
Bansal
,
N. P.
, and
Verrilli
,
M. J.
,
2005
, “
Delayed Failure of Ceramic Matrix Composites in Tension at Elevated Temperature
,”
J. Eur. Ceram. Soc.
,
25
(
9
), pp.
1629
1636
.10.1016/j.jeurceramsoc.2004.05.024
10.
Ritter
,
J. E.
,
1978
, “
Engineering Design and Fatigue of Brittle Materials
,”
Fracture Mechanics of Ceramics
, Vol.
4
,
R. C.
Bradt
,
D. P. H.
Hasselman
, and
F. F.
Lange
, eds.,
Plenum Publishing Co.
,
New York
, pp.
667
686
.
11.
McMillan
,
P. W.
,
1964
,
Glass-Ceramics
,
Academic
,
New York
.
12.
Bansal
,
G. K.
,
Duckworth
,
W. H.
, and
Niesz
,
D. E.
,
1974
, “
Strength-Size Relationship in Ceramic Materials: Investigation of Pyroceram 9606
,” Battelle Laboratories, Columbus, OH, Report No. AD/A-003 012.
13.
Wiederhorn
,
S. M.
,
1978
, “
Subcritical Crack Growth in Ceramics
,”
Fracture Mechanics of Ceramics
, Vol.
2
,
Bradt
,
R. C.
,
Hasselman
,
D. P. H.
, and
Lange
,
F. F.
, eds.,
Plenum Publishing Co.
,
New York
, pp.
613
646
.
14.
Jakus
,
K.
,
Koyne
,
D. C.
, and
Ritter
,
J. E.
,
1978
, “
Analysis of Fatigue Data for Lifetime Prediction for Ceramic Materials
,”
J. Mater. Sci.
,
13
(
10
), pp.
2071
2080
.10.1007/BF00541660
15.
Ritter
,
J. E.
,
Bandyoopadhyay
,
N.
, and
Jakus
,
K.
,
1981
, “
Statistical Reproducibility of the Dynamic and Static Fatigue Experiments
,”
Am. Ceram. Soc. Bull.
,
60
(
8
), pp.
798
806
.
16.
Evans
,
A. G.
,
1974
, “
Slow Crack Growth in Brittles Under Dynamic Loading Conditions
,”
Int. J. Fract.
,
10
(
2
), pp.
251
259
.10.1007/BF00113930
17.
Choi
,
S. R.
, and
Gyekenyesi
,
J. P.
,
2001
, “
Slow Crack Growth Analysis of Advanced Ceramics Under Combined Loading Conditions: Damage Assessment in Life Prediction Testing
,”
ASME J. Eng. Gas Turbines Power
,
123
(2), pp.
277
287
.10.1115/1.1365160
18.
Nemeth
,
N. N.
,
Powers
,
L. M.
,
Janosik
,
L. A.
, and
Gyekenyesi
,
J. P.
,
2003
, “
CARES/LIFE Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program
,” National Aeronautics and Space Administration, Glenn Research Center, Cleveland, OH, Report No. NASA/TM-2003-106316.
19.
Quinn
,
G. D.
, and
Quinn
,
J. B.
,
1983
, “
Slow Crack Growth in Hot-Pressed Silicon Nitride
,”
Fracture Mechanics of Ceramics
, Vol.
6
,
R. C.
Bradt
,
A. G.
Evans
,
D. P. H.
Hasselman
, and
F. F.
Lange
, eds.,
Plenum Publishing Corp.
,
New York
, pp.
603
636
.
20.
Choi
,
S. R.
, and
Gyekenyesi
,
J. P.
,
2002
, “
Power Law Versus Exponential Form of Slow Crack Growth of Advanced Structural Ceramics—Dynamic Fatigue
,”
ASME
Paper No. GT2002-30506. 10.1115/GT2002-30506
21.
Choi
,
S. R.
, and
Bansal
,
N. P.
,
2004
, “
Shear Strength as a Function of Test Rate for SiCf/BSAS Ceramic Matrix Composite at Elevated Temperature
,”
J. Am. Ceram. Soc.
,
87
(
10
), pp.
1912
1918
.10.1111/j.1151-2916.2004.tb06340.x
22.
Ruggles-Wrenn
,
M. B.
, and
Laffey
,
P. D.
,
2008
, “
Creep Behavior in Interlaminar Shear of NextelTM720/Alumina Ceramic Composite at Elevated Temperature in Air and in Steam
,”
Composites Sci. Technol
,
68
(
10–11
), pp.
2260
2266
.10.1016/j.compscitech.2008.04.009
23.
Choi
,
S. R.
,
Kowalik
,
R. W.
,
Alexander
,
D. J.
, and
Bansal
,
N. P.
,
2009
, “
Elevated-Temperature Stress Rupture in Interlaminar Shear of a Hi-Nic SiC/SiC Ceramic Matrix Composite
,”
Composites Sci. Technol.
,
69
(
7–8
), pp.
890
897
.10.1016/j.compscitech.2008.12.006
You do not currently have access to this content.