Green technologies are a mandate in a world concerned with saving resources and protecting the environment. Oil-free turbocharger (TC) systems for passenger and commercial vehicles dispense with the lubricant in the internal combustion engine (ICE), hence eliminating not just oil coking, but also suppressing nonlinear behavior, instability and excessive noise; all factors to poor reliability and premature mechanical failure. The work hereby presented is a stepping stone in a concerted effort toward developing a computational design tool integrating both radial and thrust foil gas bearings for oil-free automotive TCs. The paper presents the physical analysis and numerical model for prediction of the static and dynamic forced performance of gas thrust foil bearings (GTFBs). A laminar flow, thin film flow model governs the generation of hydrodynamic pressure and a finite element plate model determines the elastic deformation of a top foil and its support bump strip layers. For a specified load, the analysis predicts the minimum gas film thickness, deformation and pressure fields, the drag torque and power loss, and the axial stiffness and damping force coefficients, respectively. Open source archival test data on load capacity and drag torque serves to benchmark some of the model predictions. Next, predictions are obtained for a GTFB configuration designed for an oil-free TC operating at increasing gas temperatures, axial loads, and shaft rotational speeds. The largest drag torque occurs at the highest temperature since the gas viscosity is also highest, whereas the largest load determines operation with a minute film thickness that sets a limit for the manufacturing tolerance. While airborne, the drag friction factor for the bearing is small, ranging from 0.009 to 0.015, thus demonstrating the advantage of an air bearing technology over engine oil-lubricated bearings. The synchronous speed axial stiffness increases with operating speed (and load), whereas the axial damping coefficient remains nearly invariant. The operating gas temperature plays an insignificant role on the variation of the force coefficients with frequency, whereas the operating speed and the ensuing applied thrust load determine the largest changes. The model predicts, as an excitation frequency (ω) increases, a GTFB axial stiffness (Kz) that hardens and a damping coefficient (Cz) that quickly vanishes. The most important finding is that CzΩ/Kz ≈ γ = the material loss factor for the bearing. Hence, the success of foil bearing technology relies on the selection of a metal underspring structure that offers the largest mechanical energy dissipation characteristics.

References

1.
DellaCorte
,
C.
, and
Pinkus
,
O.
,
2000
, “
Tribological Limitations in Gas Turbine Engines: A Workshop to Identify the Challenges and Set Future Directions
,” NASA Glenn Research Center, Cleveland, OH, Report No. NASA/TM-2000-210059/REV1.
2.
Chen
,
H. M.
,
Howarth
,
R.
,
Geren
,
B.
,
Theilacker
,
J. C.
, and
Soyars
,
W. M.
,
2000
, “
Application of Foil Bearings to Helium Turbocompressor
,”
30th Turbomachinery Symposium, Turbomachinery Laboratory, Texas A&M University
,
Houston, TX
, pp.
103
113
.
3.
Heshmat
,
H.
, and
Walton
,
J. F.
,
2000
, “
Oil-Free Turbocharger Demonstration Paves Way to Gas Turbine Engine Applications
,”
ASME
Paper No. 2000-GT-0620.10.1115/2000-GT-0620
4.
Walton
,
J. F.
,
Heshmat
,
H.
, and
Tomaszewki
,
M. J.
,
2004
, “
Testing of a Small Turbocharger/Turbojet Sized Simulator Rotor Supported on Foil Bearings
,”
ASME
Paper No. GT2004-53647.10.1115/GT2004-53647
5.
Klaus Wolff
,
K.
,
Steffens
,
C.
,
Aymanns
,
R.
,
Stohr
,
R.
, and
Pischinger
,
S.
,
2008
, “
Turbo Charger Noise—Development of a Methodology for the Acoustic Turbo Charger Layout
,”
2008 JSAE Annual Congress
, Yokohama, Japan, May 21–23, Paper No. 20085246.
6.
Polichronis
,
D.
,
Evaggelos
,
R.
,
Alcibiades
,
G.
,
Elias
,
G.
, and
Apostolos
,
P.
,
2013
, “
Turbocharger Lubrication—Lubricant Behavior and Factors That Cause Turbocharger Failure
,”
Int. J. Autom. Eng. Technol.
,
2
(
1
), pp.
40
54
, available at: http://www.academicpaper.org/index.php/IJAET/article/view/33/pdf
7.
Dellacorte
,
C.
,
Lukaszewicz
,
V.
,
Valco
,
M. J.
,
Radil
,
K. C.
, and
Heshmat
,
H.
,
2000
, “
Performance and Durability of High Temperature Foil Air Bearings for Oil-Free Turbomachinery
,”
STLE Tribol. Trans.
,
43
(
4
), pp.
774
780
.10.1080/10402000008982407
8.
Heshmat
,
H.
,
Tomaszewski
,
M. J.
, and
Walton
,
J. F.
,
2006
, “
Small Gas Turbine Engine Operating With High-Temperature Foil Bearings
,”
ASME
Paper No. GT2006-9079110.1115/GT2006-90791.
9.
Heshmat
,
H.
,
Walowit
,
J.
, and
Pinkus
,
O.
,
1983
, “
Analysis of Gas-Lubricated Compliant Thrust Bearings
,”
ASME J. Lubr. Technol.
,
105
(
4
), pp.
638
646
.10.1115/1.3254696
10.
Heshmat
,
C. A.
,
Xu
,
D. S.
, and
Heshmat
,
H.
,
2000
, “
Analysis of Gas Lubricated Foil Thrust Bearings Using Coupled Finite Element and Finite Difference Methods
,”
ASME J. Tribol.
,
122
(
1
), pp.
199
204
.10.1115/1.555343
11.
Iordanoff
,
I.
,
1998
, “
Maximum Load Capacity Profiles for Gas Thrust Bearings Working Under High Compressibility Number Conditions
,”
ASME J. Tribol.
,
120
(
3
), pp.
571
576
.10.1115/1.2834589
12.
Iordanoff
,
I.
,
1999
, “
Analysis of an Aerodynamic Compliant Foil Thrust Bearing: Method for a Rapid Design
,”
ASME J. Tribol.
,
121
(
4
), pp.
816
822
.10.1115/1.2834140
13.
DellaCorte
,
C.
,
Radil
,
K. C.
,
Bruckner
,
R. J.
, and
Howard
,
S. A.
,
2008
, “
Design, Fabrication, and Performance of Open Source Generation I and II Compliant Hydrodynamic Gas Foil Bearings
,”
STLE Tribol. Trans.
,
51
(
3
), pp.
254
264
.10.1080/10402000701772579
14.
Dykas
,
B.
,
Bruckner
,
R.
,
DellaCorte
,
C.
,
Edmonds
,
B.
, and
Prahl
,
J.
,
2009
, “
Design, Fabrication, and Performance of Foil Gas Thrust Bearings for Microturbomachinery Applications
,”
ASME J. Gas Turbines Power
,
131
(
1
), p.
012301
.10.1115/1.2966418
15.
Dykas
,
B. D.
, and
Tellier
,
D. W.
,
2008
, “
A Foil Thrust Bearing Test Rig for Evaluation of High Temperature Performance and Durability
,” Army Research Laboratory, Adelphi, MD, Report No. ARL-MR-0692.
16.
Dickman
,
J. R.
,
2010
, “
An Investigation of Gas Foil Thrust Bearing Performance and Its Influencing Factors
,” M.S. thesis, Case Western Reserve University, Cleveland, OH.
17.
Stahl
,
B. J.
,
2012
, “
Thermal Stability and Performance of Foil Thrust Bearings
,” M.S. thesis, Case Western Reserve University, Cleveland, OH.
18.
San Andrés
,
L.
, and
Kim
,
T. H.
,
2010
, “
Thermohydrodynamic Analysis of Bump Type Gas Foil Bearings: A Model Anchored to Test Data
,”
ASME J. Gas Turbines Power
,
132
(
4
), p.
042504
.10.1115/1.3159386
19.
San Andrés
,
L.
,
Ryu
,
K.
, and
Kim
,
T. H.
,
2011
, “
Thermal Management and Rotordynamic Performance of a Hot Rotor-Gas Foil Bearings System—Part II: Predictions Versus Test Data
,”
ASME J. Gas Turbines Power
,
133
(
6
), p.
062502
.10.1115/1.4001827
20.
Park
,
D.-J.
,
Kim
,
C.-H.
,
Jang
,
G.-H.
, and
Lee
,
Y.-B.
,
2008
, “
Theoretical Considerations of Static and Dynamic Characteristics of Air Foil Thrust Bearing With Tilt and Slip Flow
,”
Tribol. Int.
,
41
(
4
), pp.
282
295
.10.1016/j.triboint.2007.08.001
21.
Lee
,
Y.-B.
,
Kim
,
T. Y.
,
Kim
,
C. H.
, and
Kim
,
T. H.
,
2011
, “
Thrust Bump Air Foil Bearings With Variable Axial Load: Theoretical Predictions and Experiments
,”
STLE Tribol. Trans.
,
54
(
6
), pp.
902
910
.10.1080/10402004.2011.606957
22.
Kim
,
T. H.
,
Lee
,
Y.-B.
,
Kim
,
T. Y.
, and
Jeong
,
K. H.
,
2011
, “
Rotordynamic Performance of an Oil-Free Turbo Blower Focusing on Load Capacity of Gas Foil Thrust Bearings
,”
ASME J. Gas Turbines Power
,
134
(
2
), p.
022501
.10.1115/1.4004143
23.
Lee
,
Y.-B.
,
Park
,
D.-J.
,
Kim
,
T. H.
, and
Sim
,
K.
,
2012
, “
Development and Performance Measurement of Oil-Free Turbocharger Supported on Gas Foil Bearings
,”
ASME J. Gas Turbines Power
,
134
(
3
), p.
032506
.10.1115/1.4004719
24.
Sim
,
K.
,
Kwon
,
S. B.
,
Kim
,
T. H.
, and
Lee
,
Y.-B.
,
2013
, “
Feasibility Study of an Oil-Free Turbocharger Supported on Gas Foil Bearings Via On-Road Tests of a 2-Liter Class Diesel Vehicle
,”
ASME J. Gas Turbines Power
,
135
(
5
), pp.
052701
.10.1115/1.4007883
25.
Somaya
,
K.
,
Yoshimoto
,
S.
, and
Miyatake
,
M.
,
2009
, “
Load Capacity of Aerodynamic Foil Thrust Bearings Supported by Viscoelastic Material
,”
Proc. Inst. Mech. Eng., Part J
,
223
(
4
), pp.
645
652
.10.1243/13506501JET553
26.
Lee
,
D.
, and
Kim
,
D.
,
2011
, “
Design and Performance of Hybrid Air Foil Thrust Bearing
,”
ASME J. Gas Turbines Power
,
133
(
4
), p.
042501
.10.1115/1.4002249
27.
Zhou
,
Q.
,
You
,
H.
, and
Chen
,
R.
,
2012
, “
Development of Foil Thrust Bearings With Simple Structure for Micro Turbines
,”
Adv. Mater. Res.
,
368–373
, pp.
1392
1395
.
28.
Conboy
,
T. M.
,
2013
, “
Real-Gas Effects in Foil Thrust Bearings Operating in the Turbulent Regime
,”
ASME J. Tribol.
,
135
(
3
), p.
031703
.10.1115/1.4024048
29.
Reddy
,
J. N.
,
1993
,
An Introduction to the Finite Element Method
,
McGraw-Hill, Inc.
,
New York
, Chap. 12.
30.
San Andrés
,
L.
, and
Kim
,
T. H.
,
2009
, “
Analysis of Gas Foil Bearings Integrating FE Top Foil Models
,”
Tribol. Int.
,
42
(
1
), pp.
111
120
.10.1016/j.triboint.2008.05.003
31.
Press
,
W. H.
,
Flannery
,
B. P.
,
Teukolsky
,
S. A.
, and
Vetterling
,
W. T.
,
1992
,
Numerical Recipes in FORTRAN 77: The Art of Scientific Computing
,
Cambridge University Press
,
Cambridge, UK
, pp.
89
91
.
32.
Faria
,
M.
, and
San Andrés
,
L.
,
2000
, “
On the Numerical Modeling of High Speed Hydrodynamic Gas Bearings
,”
ASME J. Tribol.
,
122
(
1
), pp.
124
130
.10.1115/1.555335
33.
San Andrés
,
L.
,
Ryu
,
K.
, and
Kim
,
T. H.
,
2011
, “
Identification of Structural Stiffness and Energy Dissipation Parameters in a Second Generation Foil Bearing: Effect of Shaft Temperature
,”
ASME J. Gas Turbines Power
,
133
(
3
), p.
032501
.10.1115/1.4002317
You do not currently have access to this content.