Annular labyrinth seals are designed as tortuous paths that force a working fluid to expand and contract repeatedly through small clearances between high and low pressure stages of turbomachinery. The resulting expansion and recirculation reduces kinetic energy of the flow and minimizes leakage rate between regions of high and low pressure through the seal. Most current seal geometries are selected based on what has worked in the past, or by incremental improvements on existing designs. In the present research, a balance drum used in a multistage centrifugal pump was chosen as a starting point. A design of experiments (DOEs) study was performed to investigate the influence of groove scale on leakage rate across the seal for a fixed pressure differential. The computational fluid dynamics (CFD) model of the selected labyrinth seal has an upstream region leading to 20 evenly spaced semicircular grooves along a 267 mm seal length, with a clearance region of 0.305 mm. The seal geometry was specified by a set of five variables. The variables allow for variation in scale of the semicircular grooves within a pattern of five independently scaled grooves repeated four times along the seal length. The seal was constructed with a parameterized CFD model in ansys-CFX as a 5 deg sector of the full 3D seal. A noncentral composite designed experiment was performed to investigate the effects of five parameters on leakage rate in the system. This study demonstrates a practical approach for investigating the effects of various geometric factors on leakage rate for balance drum seals. The empirical ten-parameter linear regression model fitted to the results of the experimental design yields suggested groove radii that could be applied to improve performance of future seals.

References

References
1.
Childs
,
D.
,
1993
,
Turbomachinery Rotordynamics
,
Wiley
,
New York
.
2.
Moore
,
J. J.
, and
Palazzolo
,
A. B.
,
2001
, “
Rotordynamic Force Prediction of Whirling Centrifugal Impeller Shroud Passages Using Computational Fluid Dynamic Techniques
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
910
918
.10.1115/1.1385829
3.
Arghir
,
M.
, and
Frêne
,
J.
,
1997
, “
Rotordynamic Coefficients of Circumferentially-Grooved Liquid Seals Using the Averaged Navier-Stokes Equations
,”
ASME J. Tribol.
,
119
(
3
), pp.
556
567
.10.1115/1.2833537
4.
Kim
,
N.
, and
Rhode
,
D. L.
,
2000
, “
A New CFD-Perturbation Model for the Rotordynamics of Incompressible Flow Seals
,”
Proceedings of ASME International Gas Turbine and Aeroengine Congress and Exposition
, Munich, Germany, May 8–11,
ASME
Paper No. 2000-GT-402.
5.
Tam
,
L. T.
,
Przekwas
,
A. J.
,
Muszynska
,
A.
,
Hendricks
,
R. C.
,
Braun
,
M. J.
, and
Mullen
,
R. L.
,
1988
, “
Numerical and Analytical Study of Fluid Dynamic Forces in Seals and Bearings
,”
ASME J. Vib. Acoust.
,
110
(3), pp.
315
325
.10.1115/1.3269519
6.
Untaroiu
,
A.
,
Wood
,
H. G.
,
Dimond
,
T.
, and
Allaire
,
P. E.
,
2008
, “
Calculation of Dynamic Coefficients for a Magnetically Levitated Artificial Heart Pump Using a CFD Approach
,”
ASME
Paper No. IMECE2008-67802. 10.1115/IMECE2008-67802
7.
Untaroiu
,
A.
,
Migliorini
,
P.
,
Wood
,
H. G.
,
Allaire
,
P. E.
, and
Kocur
,
J. A.
,
2009
, “
Hole-Pattern Seals: A Three Dimensional CFD Approach for Computing Rotordynamic Coefficient and Leakage Characteristics
,”
ASME
Paper No. IMECE2009-11558. 10.1115/IMECE2009-11558
8.
Untaroiu
,
A.
,
Goyne
,
C.
,
Untaroiu
,
C. D.
,
Wood
,
H. G.
,
Rockwell
,
R.
, and
Allaire
,
P. E.
,
2008
, “
Computational Modeling and Experimental Investigation of Static Straight-Through Labyrinth Seals
,”
ASME
Paper No. IMECE2008-67847. 10.1115/IMECE2008-67847
9.
Migliorini
,
P. J.
,
Untaroiu
,
A.
,
Wood
,
H. G.
, and
Allaire
,
P. E.
,
2012
, “
A CFD/Bulk-Flow Hybrid Method for Determining Rotordynamic Coefficients of Annular Gas Seals
,”
ASME J. Tribol.
,
134
(2), p.
022202
.10.1115/1.4006407
10.
Migliorini
,
P. J.
,
Untaroiu
,
A.
,
Witt
,
C. W.
,
Neal
,
N. R.
, and
Wood
,
H. G.
,
2014
, “
Hybrid Analysis of Gas Annular Seals With Energy Equation
,”
ASME J. Tribol.
,
136
(
3
), p.
031704
.10.1115/1.4026590
11.
Box
,
G. E. P.
,
Hunter
,
J. S.
, and
Hunter
,
W. G.
,
2005
,
Statistics for Experimenters. Design, Innovation, and Discovery
,
2nd ed.
,
Wiley
,
Hoboken, NJ
.
12.
Untaroiu
,
A.
,
Liu
,
C.
,
Migliorini
,
P. J.
,
Wood
,
H. G.
, and
Untaroiu
,
C. D.
,
2014
, “
Hole-Pattern Seals Performance Evaluation Using Computational Fluid Dynamics and Design of Experiment Techniques
,”
ASME J. Eng. Gas Turbines Power
,
136
(
10
), p.
102501
.10.1115/1.4027217
13.
Fisher
,
R. A.
,
1974
,
Design of Experiments
,
Hafner Press
,
New York, NY
.
14.
Deming
,
S. N.
, and
Morgan
,
S. L.
,
1993
,
Experimental Design: A Chemometric Approach
,
Elsevier
,
Amsterdam
, The Netherlands.
15.
Draper
,
N. R.
, and
Smith
,
H.
,
1998
,
Applied Regression Analysis
,
3rd ed.
,
Wiley
,
New York
.
16.
Untaroiu
,
A.
,
Hayrapetian
,
V.
,
Untaroiu
,
C. D.
,
Wood
,
H. G.
,
Schiavello
,
B.
, and
McGuire
,
J.
,
2013
, “
On the Dynamic Properties of Pump Liquid Seals
,”
ASME J. Fluids Eng.
,
135
(
5
), p.
051104
.10.1115/1.4023653
17.
Untaroiu
,
A.
,
Untaroiu
,
C. D.
,
Wood
,
H. G.
, and
Allaire
,
P. E.
,
2013
, “
Numerical Modeling of Fluid-Induced Rotordynamic Forces in Seals With Large Aspect Ratios
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
012501
.10.1115/1.4007341
18.
Marsis
,
E.
, and
Morrison
,
G.
,
2013
, “
Leakage and Rotordynamics Numerical Study of Circular Grooved and Rectangular Grooved Labyrinth Seals
,”
ASME
Paper No. GT2013-96001.10.1115/GT2013-96001
19.
Daniel
,
C.
,
1976
,
Applications of Statistics to Industrial Experimentation
,
Wiley
,
New York
.
You do not currently have access to this content.