In this paper, two different advanced control approaches for a pressurized solid oxide fuel cell (SOFC) hybrid system are investigated and compared against traditional proportional integral derivative (PID). Both advanced control methods use model predictive control (MPC): in the first case, the MPC has direct access to the plant manipulated variables, in the second case, the MPC operates on the setpoints of PIDs which control the plant. In the second approach, the idea is to use MPC at the highest level of the plant control system to optimize the performance of bottoming PIDs, retaining system stability and operator confidence. Two MIMO (multi-input multi-output) controllers were obtained: fuel cell power and cathode inlet temperature are the controlled variables; fuel cell bypass flow, current and fuel mass flow rate (the utilization factor kept constant) are the manipulated variables. The two advanced control methods were tested and compared against the conventional PID approach using a SOFC hybrid system model. Then, the MPC controller was implemented in the hybrid system emulator test rig developed by the thermochemical power group (TPG) at the University of Genoa. Experimental tests were carried out to compare MPC against classic PID method: load following tests were carried out. Ramping the fuel cell load from 100% to 80% and back, keeping constant the target of the cathode inlet temperature, the MPC controller was able to reduce the mismatch between the actual and the target values of the cathode inlet temperature from 7 K maximum of the PID controller to 3 K maximum, showing more stable behavior in general.

References

1.
Caratozzolo
,
F.
,
Ferrari
,
M. L.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2013
, “
Emulator Rig for SOFC Hybrid Systems: Temperature and Power Control With a Real-Time Software
,”
Fuel Cells
,
13
(6), pp. 1123–1130.10.1002/fuce.201200229
2.
U.S. Energy Information Agency, 2013, “International Energy Outlook 2013,” U.S. Department of Energy, Washington, DC.
3.
McLarty
,
D.
,
Kuniba
,
Y.
,
Brouwer
,
J.
, and
Samuelsen
,
S.
,
2012
, “
Experimental and Theoretical Evidence for Control Requirements in Solid Oxide Fuel Cell Gas Turbine Hybrid Systems
,”
J. Power Sources
,
209
, pp.
195
203
.10.1016/j.jpowsour.2012.02.102
4.
Ferrari
,
M. L.
,
2011
, “
Solid Oxide Fuel Cell Hybrid System: Control Strategy for Stand-Alone Configurations
,”
J. Power Sources
,
196
(
5
), pp.
2682
2690
.10.1016/j.jpowsour.2010.11.029
5.
Veyo
,
S. E.
,
Shockling
,
L. A.
,
Dederer
,
J. T.
,
Gillet
,
J. E.
, and
Lundberg
,
W. L.
,
2002
, “
Tubular Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Power Systems: Status
,”
ASME J. Eng. Gas Turbines Power
,
124
(4), pp.
845
849
.10.1115/1.1473148
6.
Massardo
,
A. F.
, and
Lubelli
,
F.
,
2000
, “
Internal Reforming Solid Oxide Fuel Cell—Gas Turbine Combined Cycles (IRSOFC-GT). Part A: Cell Model and Cycle Thermodynamic Analysis
,”
ASME J. Eng. Gas Turbines Power
,
122
(1), pp.
27
35
.10.1115/1.483187
7.
Hirscenhofer
,
J. H.
,
Stauffer
,
D. B.
,
Engleman
,
R. R.
, and
Klett
,
M. G.
,
1998
, “
Fuel Cell Handbook
,” U.S. Department of Energy, Morgantown, WV, Report No. DOE/FETC-99/1076.
8.
Hasikos
,
J.
,
Sarimveis
,
H.
,
Zervas
,
P. L.
, and
Markatos
,
N. C.
,
2009
, “
Operational Optimization and Real-Time Control of Fuel-Cell Systems
,”
Power Sources
,
193
(1), pp.
258
268
.10.1016/j.jpowsour.2009.01.048
9.
Jurado
,
F.
,
2006
, “
Predictive Control of Solide Oxide Fuel Cell Using Fuzzy Hammerstein Models
,”
J. Power Sources
,
158
(1), pp.
245
253
.10.1016/j.jpowsour.2005.08.041
10.
Richalet
,
J.
,
1993
, “
Industrial Applications of Model Based Predictive Control
,”
Automatica
,
29
(5), pp.
1251
1274
.10.1016/0005-1098(93)90049-Y
11.
D'Amato
,
F.
,
2006
, “
Industrial Application of Model Predictive Control Solution for Power Plant Startups
,”
IEEE
International Conference on Control Applications
,
Munich
, Germany, Oct. 4–6, Paper No. WeA07.6.10.1109/CACSD-CCA-ISIC.2006.4776653
12.
Jurado
,
F.
, and
Ortega
,
M.
,
2006
, “
Model Based Predictive Control of Fuel Cells
,”
Electr. Power Compon. Syst.
,
34
(5), pp.
587
602
.10.1080/15325000500352121
13.
Wu
,
X. J.
,
Zhu
,
X. J.
,
Cao
,
G. Y.
, and
Tu
,
H. Y.
,
2008
, “
Predictive Control of SOFC Based on a GA-RBF Neural Network Model
,”
J. Power Sources
,
179
(1), pp.
232
239
.10.1016/j.jpowsour.2007.12.036
14.
Murshed
,
A. M.
,
Huang
,
B.
, and
Nandakumar
,
K.
,
2010
, “
Estimation and Control of Solid Oxide Fuel Cell System
,”
Comput. Chem. Eng.
,
34
(1), pp.
96
111
.10.1016/j.compchemeng.2009.06.018
15.
Spivey
,
B. J.
, and
Edgar
,
T. F.
,
2012
, “
Dynamic Modeling, Simulation, and MIMO Predictive Control of a Tubular Solid Oxide Fuel Cell
,”
J. Process
,
22
(8), pp.
1502
1520
.10.1016/j.jprocont.2012.01.015
16.
Ferrari
,
M. L.
,
Pascenti
,
M.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2011
, “
MGT/HTFC Hybrid System Emulator Test Rig: Experimental Investigation on the Anodic Recirculation System
,”
ASME J. Fuel Cell Sci. Technol.
,
8
(2), p.
021012
.10.1115/1.4002316
17.
Tucker
,
D.
,
Liese
,
E.
,
Van Osdol
,
J. G.
,
Lawson
,
L. O.
, and
Gemmen
,
R. S.
,
2003
, “
Fuel Cell Gas Turbine Hybrid Simulation Facility Design
,”
ASME
Paper No. IMECE2002-33207.10.1115/IMECE2002-33207
18.
Ferrari
,
M. L.
,
Pascenti
,
M.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2010
, “
Hybrid System Test Rig: Start-up and Shutdown Physical Emulation
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(2), p.
021005
.10.1115/1.3176663
19.
Ferrari
,
M. L.
,
Pascenti
,
M.
,
Traverso
,
A. N.
, and
Massardo
,
A. F.
,
2012
, “
Hybrid System Test Rig: Chemical Composition Emulation With Steam Injection
,”
Appl. Energy
,
97
, pp.
809
815
.10.1016/j.apenergy.2011.11.029
20.
Pezzini
,
P.
,
Caratozzolo
,
F.
, and
Traverso
,
A.
,
2011
, “
Real-Time Simulation of an Experimental Rig With Pressurized SOFC
,”
ASME
Paper No. GT2011-45527.10.1115/GT2011-45527
21.
Bemporad
,
A.
,
Morari
,
M.
, and
Ricker
,
N. L.
,
2002
, “
Model Predictive Control Toolbox for Matlab—User's Guide
,”
The Mathworks, Inc
, Natick, MA.
22.
Caratozzolo
,
F.
,
Ferrari
,
M. L.
,
Traverso
,
A.
, and
Massardo
,
A.
,
2013
, “
Experimental Test of Temperature and Power Control for a SOFC Hybrid System Emulator
,” XXI International Symposium on Air Breathing Engines (ISABE 2013), Busan, Korea, Sept. 9–13, Paper No. ISABE-2013-1708.
You do not currently have access to this content.