Solar gas turbine (GT) systems provide the opportunity to utilize solar heat at a much higher temperature than solar thermal power plants based on steam turbine cycles. Therefore, GT technology has the potential to improve the efficiency of future solar thermal power plants. Nevertheless, to achieve mature technology for commercial application, further development steps are required. Knowledge of the operational behavior of the solar GT system is the basis for the development of the systems control architecture and safety concept. The paper addresses dynamic simulation of high solar share GT systems, which are characterized by primary input of solar heat to the GT. To analyze the dynamic operating behavior, a model with parallel arrangement of the combustion chamber and the solar receiver was set up. By using the heaviside step function, the system dynamics were translated into transfer functions which are used to develop controllers for the particular system configuration. Two operating conditions were simulated to test the controller performance. The first case is the slow increase and decrease of solar heat flow, as part of a regular operation. The second case is an assumed rapid change of solar heat flow, which can be caused by clouds. For all cases, time plots of critical system parameters are shown and analyzed. The simulation results show much more complex system behavior compared to conventional GT systems. This is due to the additional solar heat source, large volumes, and stored thermal energy as well as the time delay of energy transportation caused by the piping system.

References

1.
Barigozzi
,
G.
,
Bonetti
,
G.
,
Franchini
,
G.
,
Perdichizzi
,
A.
, and
Ravelli
,
S.
,
2012
, “
Solar Hybid Combined Cycle Performance Prediction: Influence of GT Model and Spool Arrangement
,”
ASME
Paper No. GT2012-68881.10.1115/GT2012-68881
2.
Schwarzbözl
,
P.
,
Buck
,
R.
,
Sugarmen
,
C.
,
Ring
,
A.
,
Crespo
,
M.
,
Altwegg
,
P.
, and
Enrile
,
J.
,
2005
,
Solar Gas Turbine Systems: Design, Cost and Perspectives
,
Elsevier
, Amsterdam.
3.
Avila-Marin
,
A. L.
,
2011
,
Volumetric Receivers in Solar Thermal Power Plants With Central Receiver System Technology: A Review
,
Elsevier
, Amsterdam.
4.
Spelling
,
J.
,
Laumert
,
B.
, and
Fransson
,
T.
,
2013
, “
A Comparative Thermodynamic Study Of Hybrid Solar Gas-Turbine Power Plants
,”
ASME
Paper No. GT2013-94046.10.1115/GT2013-94046
5.
Bammert
,
K.
,
1980
,
Layout of Gas Cycles for Solar Power Generation
,
Elsevier
, Amsterdam.
6.
Scheuerer
,
K.
,
1987
, “
Berechnung des Stationären und Instationären Betriebsverhaltens von Solar-Kraftanlagen mit Paraboloidkonzentrator und Gasturbine
,” TU München, Munich, Germany.
7.
Lange
,
H. J.
,
1993
, “
Auslegung und Betriebsverhalten von Gasturbinenanlagen mit solar-fossiler Hybridbeheizung
,” VDI Fortschrittsberichte Reihe 6 Nr.283, VDI Verlag, Dusseldorf, Germany.
8.
Heide
,
S.
,
Felsmann
,
C.
,
Gampe
,
U.
,
Freimark
,
M.
,
Langnickel
,
U.
,
Boje
,
S.
,
Gericke
,
B.
,
Buck
,
R.
, and
Giulliano
,
S.
,
2012
, “
Parametrization of High Solar Share Gas Turbine Systems
,”
ASME
Paper No. GT2012-68608.10.1115/GT2012-68608
9.
ITI GmbH,
2009
,
Library Manual SimulationX
,
ITI GmbH
, Dresden, Germany.
10.
VDI e.V.,
2003
,
VDI-Richtlinie 4670—Thermodynamic Properties of Humid Air and Combustion Gases
,
Beuth Verlag GmbH
, Berlin.
11.
Schobeiri
,
M. T.
,
2012
,
Turbomachinery Flow Physics and Dynamic Performance
,
Springer
, Berlin.
12.
Kurzke
,
J.
,
1996
, “
How to Get Component Maps for Aircraft Gas Turbine Performance Calculation
,” ASME 96-GT-164.
13.
Baehr
,
H. D.
, and
Kabelac
,
S.
,
2009
,
Thermodynamik: Grundlagen und Technische Anwendungen
,
Springer
, Berlin.
14.
Camporeale
,
S. M.
,
Fortunato
,
B.
, and
Mastrovito
,
M.
,
2006
, “
A Modular Code for Real Time Dynamic Simulation of Gas Turbines in Simulink
,”
ASME J. Eng. Gas Turbines Power
128
(3), pp.
506
517
.10.1115/1.2132383
15.
Jonsson
,
M.
,
Bolland
,
O.
,
Bücker
,
D.
, and
Rost
,
M.
,
2005
, “
Gas Turbine Cooling Model for Evaluation of Novel Cycles
,” 18th International Conference on Efficiency, Cost, Optimization, Simulation, and Environmental Impact of Energy Systems (ECOS 2005), Trondheim, Norway, June 20–22.
16.
Balje
,
O. E.
,
1981
,
Turbomachines—A Guide to Design, Selection, and Theory
,
John Wiley & Sons
, Hoboken, NJ.
17.
Laurien
,
E.
, and
Oertel
,
H.
, Jr.
,
2009
,
Numerische Strömungsmechanik
,
Vieweg+Teubner
, Wiesbaden, Germany.
18.
VDI e.V.,
2006
,
VDI-Wärmeatlas
,
Springer
, Berlin.
19.
Uhlig
,
R.
,
2001
, “
Transient Stresses at Metallic Solar Tube Receivers
,” 17th SolarPACES Conference, Grenada, Spain, Sept. 20–23.
20.
Lutz
,
H.
, and
Wendt
,
W.
,
2012
,
Taschenbuch der Regelungstechnik: Mit Matlab und Simulink
,
Harri Deutsch
, Frankfurt am Main, Germany.
You do not currently have access to this content.