Flame flashback from the combustion chamber to the premixing section is a major operability issue when using high H2 content fuels in lean premixed combustors. Depending on the flow-field in the combustor, flashback can be triggered by different mechanisms. In this work, three flashback mechanisms of H2/CH4 mixtures were visualized in an atmospheric variable-swirl burner using high speed OH* chemiluminescence imaging. The H2 mole fraction of the tested fuel mixtures varied between 0.1 and 0.9. The flow-field in the combustor was varied by changing the swirl number from 0.0 to 0.66 and the total air mass-flow rate from 75 to 200 SLPM (standard liters per minute). The following three types of flashback mechanism were observed: Flashback caused by combustion induced vortex breakdown (CIVB) occurred at swirl numbers 0.53 for all of the tested fuel mixtures. Flashback in the boundary layer (BL) and flame propagation in the premixing tube caused by auto-ignition were observed at low swirl numbers and low total air mass-flow rates. The temporal and spatial propagation of the flame in the optical section of the premixing tube during flashback was studied and flashback speed for different mechanisms was estimated. The flame propagation speed during flashback was significantly different for the different mechanisms.

References

1.
Moriarty
,
P.
, and
Honnery
,
M.
,
2007
, “
Intermittent Renewable Energy: The Only Future Source of Hydrogen
,”
Int. J. Hydrogen Energy
,
32
(
12
), pp.
1616
1624
.10.1016/j.ijhydene.2006.12.008
2.
Melaina
,
M. W.
,
Antonia
,
O.
, and
Penev
,
M.
,
2013
, “
Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-5600-51995.
3.
Page
,
D.
,
Shaffer
,
B.
, and
McDonell
,
V.
,
2012
, “
Establishing Operating Limits in a Commercial Lean Premixed Combustor Operating on Synthesis Gas Pertaining to Flashback and Blowout
,”
ASME
Paper No. GT2012-69355.10.1115/GT2012-69355
4.
Lieuwen
,
T.
,
McDonell
, V
.
,
Petersen
,
E.
, and
Santavicca
,
D.
,
2008
, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability
,”
ASME J. Eng. Gas Turbines Power
,
130
(
5
), p.
011506
.10.1115/1.2771243
5.
Noble
,
D. R.
,
Zhang
,
Q.
,
Shareef
,
A.
,
Tootle
,
J.
,
Meyers
,
A.
, and
Lieuwen
,
T.
,
2006
, “
Syngas Mixture Composition Effects Upon Flashback and Blowout
,”
ASME
Paper No. GT2006-90470.10.1115/GT2006-90470
6.
Lieuwen
,
T.
,
McDonell
,
V.
,
Santavicca
,
D.
, and
Sattelmayer
,
T.
,
2008
, “
Burner Development and Operability Issues Associated with Steady Flowing Syngas Fired Combustors
,”
Combust. Sci. Technol.
,
180
(
6
), pp.
1169
1192
.10.1080/00102200801963375
7.
Umemura
,
A.
, and
Tomita
,
K.
,
2000
, “
Rapid Flame Propagation in a Vortex Tube in Perspective of Vortex Breakdown Phenomena
,”
Combust. Flame
,
125
(
1,2
), pp.
820
838
.10.1016/S0010-2180(00)00240-6
8.
Kröner
,
M.
,
Fritz
,
J.
, and
Sattelmayer
,
T.
,
2003
, “
Flashback Limits for Combustion Induced Vortex Breakdown in a Swirl Burner
,”
ASME J. Eng. Gas Turbines Power
,
125
(
3
), pp.
693
700
.10.1115/1.1582498
9.
Kröner
,
M.
,
Sattelmayer
,
T.
,
Fritz
,
J.
,
Kieswetter
,
F.
, and
Hirsch
,
Ch.
,
2007
, “
Flame Propagation in Swirling Flows-Effects of Local Extinction on the Combustion Induced Vortex Breakdown
,”
Combust. Sci. Technol.
,
179
(
7
), pp.
1385
1416
.10.1080/00102200601149902
10.
Fritz
,
J.
,
Kröner
,
M.
, and
Sattelmayer
,
T.
,
2004
, “
Flashback in a Swirl Burner With Cylindrical Premixing Zone
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
276
283
.10.1115/1.1473155
11.
Lewis
,
B.
, and
von Elbe
,
G.
,
1961
,
Combustion, Flames and Explosion of Gases
,
Academic Press
,
New York
.
12.
Wohl
,
K.
,
1953
, “
Quenching, Flash-Back, Blow-Off-Theory and Experiment
,”
Symp. (Int.) Combust.
,
4
(1), pp.
69
89
.10.1016/S0082-0784(53)80011-1
13.
Yamazaki
,
K.
, and
Tsuji
,
H.
,
1961
, “
An Experimental Investigation on the Stability of Turbulent Burner Flames
,”
Symp. (Int.) Combust.
,
8
(1), pp.
543
553
.10.1016/S0082-0784(06)80545-X
14.
Fine
,
B.
,
1958
, “
The Flashback of Laminar and Turbulent Burner Flames at Reduced Pressure
,”
Combust. Flame
,
2
(
3
), pp.
253
266
.10.1016/0010-2180(58)90046-4
15.
Shaffer
,
B.
,
Duan
,
Z. H.
, and
McDonell
,
V.
,
2013
, “
Study of Fuel Composition Effects on Flashback Using a Confined Jet Flame Burner
,”
ASME J Eng. Gas Turbines Power
,”
135
(
12
), pp.
1
9
.10.1115/1.4007345
16.
Daniele
,
S.
,
Jonsohn
,
P.
, and
Boulouchos
,
B.
,
2010
, “Flashback Phenomena Associated With Lean Premixed Syngas Combustion at Gas Turbine Like Conditions,” Processes and Technologies for a Sustainable Energy (
PTSE 2010
),
Ischia
, Italy, June 27–30.10.4405/ptse2010.II3
17.
Eichler
,
C.
,
Baumgartner
,
G.
, and
Sattelmayer
,
T.
,
2012
, “
Experimental Investigation of Turbulent Boundary Layer Flashback Limits for Premixed Hydrogen-Air Flames Confined in Ducts
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
011502
.10.1115/1.4004149
18.
Plee
,
S. L.
, and
Mellor
,
A. M.
,
1978
, “
Review of Flashback Reported in Prevaporizing/Premixing Combustors
,”
Combust. Flame
,
32
(
0
), pp.
193
203
.10.1016/0010-2180(78)90093-7
19.
Beerer
,
D. J.
, and
McDonell
, V
.
,
2008
, “
Autoignition of Hydrogen and Air Inside a Continuous Flow Reactor With Application to Lean Premixed Combustion
,”
ASME J. Eng. Gas Turbines Power
,
130
(
5
), p.
051507
.10.1115/1.2939007
20.
Schönborn
,
A.
,
Sayad
,
P.
,
Konnov
,
A.
, and
Klingmann
,
J.
,
2014
, “
OH*-Chemiluminescence During Autoignition of Hydrogen and Air in a Pressurised Flow Reactor
,”
Int. J. Hydrogen Energy
,
39
(
23
), pp.
12166
12181
.10.1016/j.ijhydene.2014.05.157
21.
Syred
,
N.
, and
Beer
,
J. M.
,
1974
, “
Combustion in Swirling Flows: A Review
,”
Combust. Flame
,
23
(
2
), pp.
143
201
.10.1016/0010-2180(74)90057-1
You do not currently have access to this content.