A modern gas turbine engine (GTE) is a complex nonlinear dynamic system with the mutual effect of gas-dynamic and thermal processes in its components. The engine development requires the precise real-time simulation of all main operating modes. One of the most complex operating modes for modeling is “cold stabilization,” which is the rotors acceleration without completely heated up the turbine elements. The dynamic heating problem is a topical practical issue. Solving the problem requires coordinating a gas-path model with heat and stress models, which is also a significant scientific problem. The phenomenon of interest is the radial clearances change during engines operation and its influence on engines static and dynamic performances. To consider the clearance change, it is necessary to synthesize the quick proceeding stress-state models (QPSSM) of a rotor and a casing for the initial temperature and dynamic heating. The unique feature of the QPSSM of GTEs is separate equation sets, which allow the heat exchange between structure elements and the gas (air) and the displacements of the turbine rotor and the casing. This ability appears as a result of determining the effect of each factor on different structural elements of the engine. The presented method significantly simplifies the model identification, which can be performed based on a precise calculation of the unsteady temperature fields of the structural elements and the variation of the radial clearance. Thus, the present paper addresses a new method to model the engine dynamics considering its heating up. The method is based on the integration of three models: the gas-path dynamics model, the clearance dynamics model, and the model of the clearance effect on the efficiency. The paper also comprises the program implementation of the models. The method was tested by applying to a particular turbofan engine.

References

1.
Sobey
,
A. J.
, and
Suggs
,
A. M.
,
1963
,
Control of Aircraft and Missile Powerplants
,
Wiley
,
New York
.
2.
Saravanomuttoo
,
H. I. H.
, and
Fawke
,
A. J.
,
1973
, “
Simulation of Gas Turbine Dynamic Performance
,” ASME Paper No. 70-GT-23.
3.
Jaw
,
L. C.
, and
Mattingly
,
J. D.
,
2009
,
Aircraft Engines Controls: Design, System Analysis, and Health Monitoring
,
American Institute of Aeronautics and Astronautics, Inc.
,
Reston, VA
.
4.
Kurzke
,
J.
,
2011
, “
Transient Simulations During Preliminary Conceptual Engine Design
,” ISABE Paper No. 2011-1321.
5.
Gritsenko
,
E. A.
,
Danilchenko
,
V. P.
,
Lukachev
,
S. V.
,
Kovyilov
,
Yu. L.
,
Reznik
,
V. E.
, and
Tsyibizov
,
Yu. I.
,
2002
,
Some Aspects of Aircraft Gas Turbine Engine Designing
,
RAC
,
Samara, Russian Federation
, p.
527
.
6.
Philidis
,
P.
, and
Maccalum
,
H. I. H.
,
1984
, “
A Study of the Prediction of the Tip and Seal Clearances and Their Effect in Gas Turbine Transient Transients
,” ASME Paper No. 84-GT-245.
7.
Nielsen
,
A. E.
,
Moll
,
C. W.
, and
Staudacher
,
S.
,
2004
, “
Modeling and Validation of the Thermal Effects on Gas Turbine Transients
,”
ASME
Paper No. GT2004-53344.10.1115/GT2004-53344
8.
Merkler
,
R. S.
, and
Staudacher
,
S.
,
2006
, “
Modeling of Heat Transfer and Clearance Changes in Transient Performance Calculations—A Comparison
,”
ASME
Paper No. GT2006-90041.10.1115/GT2006-90041
9.
Bouillet
,
P.
,
1984
, “
L'evolution de la technology des turboreactours de forte puissance
,”
L'aeronautique et l'astronautique
,
107
, рp.
4
29
.
10.
Litvinov
,
J. A.
, and
Borovik
,
V. O.
,
1979
, Performances and Maintenance Features of Aircraft Jet Engines, (Характеристики и эксплуатационные свойства авиационных турбореактивных двигателей), Машиностроение, Moscow, Russian Federation, pp.
288
.
11.
Tallman
,
J.
, and
Lakshminarayana
,
B.
,
2000
, “
Numerical Simulation of Tip Leakage Flows in Axial Flow Turbines, With Emphasis on Flow Physics. Part I: Effect of Tip Clearance Height
,”
ASME J. Turbomach.
,
123
(2), pp. 314–323.10.1115/1.1368881
12.
Zhengming
,
X. J.
, and
Cai
,
W. R.
,
2001
, “
Numerical Investigation of Different Tip Gap Shape Effects on Aerodynamic Performance of an Axial-Flow Compressor Casing
,”
ASME
Paper No. 2001-GT-0337.10.1115/2001-GT-0337
13.
Kofman
,
V. M.
, and
Petrov
,
G. G.
,
1983
, “
Analysis of Mathematical Modeling Results Being Influenced by Errors in Setting Components' Performances at Steady Modes
,” (Оценка влияния точности задания стационарных характеристик узлов ТРД на результаты математического моделирования его неустановившихся режимов. Вопросы теории и расчета рабочих процессов тепловых двигателей), Theor. Comp. Aspects Work. Process Heat Eng.,
7
, pp.
89
92
.
14.
Dobryanskiy
,
V. G.
, and
Martyanova
,
T. S.
,
1989
,
Aircraft GTEs Dynamics
, (Динамика авиационных ГТД), Машиностроение, Moscow, Russian Federation, pp.
240
.
15.
Gurevich
,
O. S.
,
Golberg
,
F. D.
, and
Selivanov
,
O. D.
,
1993
, Coordinated Control of Aircraft With Multimode Power Plant, (Интегрированное управление силовой установкой многорежимного самолета; под общей ред. Гуревича О. С.), Машиностроение, Moscow, Russian Federation, pp.
304
.
16.
Krikunov
,
D. V.
,
Simbirskiy
,
D. F.
, and
Oleynik
,
A. V.
,
2001
, “
Model of Heat Exchange Boundary Conditions of GTE Rotating Parts for Lifetime Exhaustion Monitoring
,” (Модель граничных условий конвективного теплообмена роторных деталей ГТД для систем учета выработки ресурса), Авиационно-космическая техника и технология, Aerosp. Techn. Tech.,
9
(
23
), pp.
131
141
.
17.
Yepifanov
,
S. V.
,
Kuznetzov
,
B. I.
,
Bogayenko
,
I. N.
et al.,
1998
, Synthesis of Control and Diagnostic Systems of Gas-Turbine Engines, (Синтез систем управления и диагностирования газотурбинных двигателей), Техника, Kiev, Russia, pp.
311
.
18.
Oleynik
,
A. V.
,
2004
, “
Heat State Monitoring of GTE Parts in a Form of Dynamic Finite Element Problem in the State Space
,” (Эксплуатационный мониторинг температурного состояния детали газотурбинного двигателя как задача динамики конечно –элементной модели в пространстве состояний) Авиационно-космическая техника и технология, Aerosp. Techn. Tech.,
4
(
12
), pp.
38
42
.
19.
Kopelev
,
S. Z.
, and
Slitenko
,
A. F.
,
1994
,
Designing and Analysis of GTE Cooling Systems
(Конструкции и расчет систем охлаждения ГТД), Основа,
Kharkov State University
,
Kharkiv, Ukraine
, pp.
240
.
20.
Shvets
,
I. T.
, and
Dyiban
,
E. P.
,
1974
, Cooling Parts of Turbines With Air, (Воздушное охлаждение деталей газовых турбин), Наукова думка, Kiev, Ukraine, pp.
487
.
21.
Oleynik
,
O. V.
,
2006
, “
The Concept and Methods of Lifetime Depletion Monitoring of Gas Turbine Air-Engine Based on a Dynamic Identification of Thermal and Stress Condition of Main Details
,” D.S. (Engineering) dissertation, National Aerospace University, Kharkov, Ukraine.
22.
Ivahnenko
,
A. G.
, and
Krachkovskiy
,
Yu. P.
,
1987
, Modeling Complex Systems According to Experimental Data, (Моделирование сложных систем по экспериментальным данным), Радио и связь, Moscow, Russian Federation, pp.
527
.
You do not currently have access to this content.