The effect of hydrogen enrichment to natural gas flames was experimentally investigated at atmospheric pressure conditions using flame chemiluminescence imaging, planar laser-induced fluorescence of hydroxyl radicals (OH PLIF), and dynamic pressure monitoring. The experiments were performed using a third generation dry low emission (DLE) burner used in both SGT-700 and SGT-800 industrial gas turbines from Siemens. The burner was mounted in an atmospheric combustion test rig at Siemens with optical access in the flame region. Four different hydrogen enriched natural gas flames were investigated; 0 vol. %, 30 vol. %, 60 vol. %, and 80 vol. % of hydrogen. The results from flame chemiluminescence imaging and OH PLIF show that the size and shape of the flame was clearly affected by hydrogen addition. The flame becomes shorter and narrower when the amount of hydrogen is increased. For the 60 vol. % and 80 vol. % hydrogen flames the flame has moved upstream and the central recirculation zone that anchors the flame has moved upstream the burner exit. Furthermore, the position of the flame front fluctuated more for the full premixed flame with only natural gas as fuel than for the hydrogen enriched flames. Measurements of pressure drop over the burner show an increase with increased hydrogen in the natural gas despite same air flow thus confirming the observation that the flame front moves upstream toward the burner exit and thereby increasing the blockage of the exit. Dynamic pressure measurements in the combustion chamber wall confirms that small amounts of hydrogen in natural gas changes the amplitude of the dynamic pressure fluctuations and initially dampens the axial mode but at higher levels of hydrogen an enhancement of a transversal mode in the combustion chamber at higher frequencies could occur.

References

1.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion; Alternative Fuels and Emissions
, 3rd ed.,
CRC Press, Taylor & Francis Group
,
New York
.
2.
Barrére
,
M.
, and
Williams
,
F. A.
,
1969
, “
Comparison of Combustion Instabilities Found in Various Types of Combustion Chambers
,”
Sym. (Int.) Combust.
,
12
(
1
), pp.
169
181
.10.1016/S0082-0784(69)80401-7
3.
Candel
,
S. M.
,
1992
, “
Combustion Instabilities Coupled by Pressure Waves and Their Control
,”
Sym. (Int.) Combust.
,
24
(
1
), pp.
1277
1296
.10.1016/S0082-0784(06)80150-5
4.
Lieuwen
,
T.
,
Torres
,
H.
,
Johnson
,
C.
, and
Zinn
,
B. T.
,
2001
, “
A Mechanism of Combustion Instability in Lean Premixed Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
182
189
.10.1115/1.1339002
5.
Rayleigh
,
J. W. S.
,
1878
, “
The Explanation of Certain Acoustical Phenomena
,”
Nature
,
18
(
455
), pp.
319
321
.10.1038/018319a0
6.
Schefer
,
R. W.
,
Wicksall
,
D. M.
, and
Agrawal
,
A. K.
,
2002
, “
Combustion of Hydrogen-Enriched Methane in a Lean Premixed Swirl-Stabilized Burner
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
843
851
.10.1016/S1540-7489(02)80108-0
7.
Dong
,
C.
,
Zhou
,
Q.
,
Zhang
,
X.
,
Zhao
,
Q.
,
Xu
,
T.
, and
Hui
,
S.
,
2010
, “
Experimental Study on the Laminar Flame Speed of Hydrogen/Natural Gas/Air Mixtures
,”
Front. Chem. Eng. China
,
4
(
4
), pp.
417
422
.10.1007/s11705-010-0515-8
8.
Brower
,
M.
,
Petersen
,
E. L.
,
Metcalfe
,
W.
,
Curran
,
H. J.
,
Füri
,
M.
,
Bourque
,
G.
,
Aluri
,
N.
, and
Güthe
,
F.
,
2013
, “
Ignition Delay Time and Laminar Flame Speed Calculations for Natural Gas/Hydrogen Blends at Elevated Pressures
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
021504
.10.1115/1.4007763
9.
Venkateswaran
,
P.
,
Marshall
,
A. D.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T. C.
,
2013
, “
Turbulent Consumption Speeds of High Hydrogen Content Fuels From 1-20 atm
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
011504
.10.1115/1.4025210
10.
Tuncer
,
O.
,
Acharya
,
S.
, and
Uhm
,
J. H.
,
2009
, “
Dynamics, NOx and Flashback Characteristics of Confined Premixed Hydrogen-Enriched Methane Flames
,”
Int. J. Hydrogen Energy
,
34
(
1
), pp.
496
506
.10.1016/j.ijhydene.2008.09.075
11.
Kim
,
H. S.
,
Arghode
,
V. K.
,
Linck
,
M. B.
, and
Gupta
,
A. K.
,
2009
, “
Hydrogen Addition Effects in a Confined Swirl-Stabilized Methane-Air Flame
,”
Int. J. Hydrogen Energy
,
34
(
2
), pp.
1054
1062
.10.1016/j.ijhydene.2008.10.034
12.
Griebel
,
P.
,
Boschek
,
E.
, and
Jansohn
,
P.
,
2007
, “
Lean Blowout Limits and NOx Emissions of Turbulent, Lean Premixed, Hydrogen-Enriched Methane/Air Flames at High Pressure
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
404
410
.10.1115/1.2436568
13.
Emadi
,
M.
,
Karkow
,
D.
,
Salameh
,
T.
,
Gohil
,
A.
, and
Ratner
,
A.
,
2012
, “
Flame Structure Changes Resulting From Hydrogen-Enrichment and Pressurization for Low-Swirl Premixed Methane-Air Flames
,”
Int. J. Hydrogen Energy
,
37
(
13
), pp.
10397
10404
.10.1016/j.ijhydene.2012.04.017
14.
Lückerath
,
R.
,
Lammel
,
O.
,
Stöhr
,
M.
,
Boxx
, I
.
,
Stopper
,
U.
,
Meier
,
W.
,
Janus
,
B.
, and
Wegner
,
B.
,
2011
, “
Experimental Investigations of Flame Stabilization of a Gas Turbine Combustor
,”
ASME
Paper No. GT2011-45790.10.1115/GT2011-45790
15.
Döbbeling
,
K.
,
Hellat
,
J.
, and
Koch
,
H.
,
2007
, “
25 Years of BBC/ABB/Alstom Lean Premix Combustion Technologies
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
2
12
.10.1115/1.2181183
16.
Lörstad
,
D.
,
Lindholm
,
A.
,
Pettersson
,
J.
,
Björkman
,
M.
, and
Hultmark
,
I.
,
2013
, “
Siemens SGT-800 Industrial Gas Turbine Enhanced to 50 MW: Combustor Design Modifications, Validation and Operation Experience
,”
ASME
Paper No. GT2013-95478.10.1115/GT2013-95478
17.
Wang
,
L.
,
Bahador
,
M.
,
Bruneflod
,
S.
,
Annerfeldt
,
M.
,
Björkman
,
M.
, and
Hultmark
,
I.
,
2013
, “
Siemens SGT-800 Industrial Gas Turbine Enhanced to 50 MW: Turbine Design Modification, Validation and Operation Experience
,”
ASME
Paper No. GT2013-95462.10.1115/GT2013-95462
18.
Bruneflod
,
S.
,
2010
, “
Flow Simulations of an Axisymmetric Two-Dimensional 3rd Generation DLE Burner
,” M.S. thesis, Luleå University of Technology, Lulea, Sweden.
19.
Lindholm
,
A.
,
Lörstad
,
D.
,
Magnusson
,
P.
,
Andersson
,
P.
, and
Larsson
,
T.
,
2009
, “
Combustion Stability and Emissions in a Lean Premixed Industrial Gas Turbine Burner Due to Changes in the Fuel Profile
,”
ASME
Paper No. GT2009-59409.10.1115/GT2009-59409
20.
Lörstad
,
D.
,
Lindholm
,
A.
,
Alin
,
N.
,
Fureby
,
C.
,
Lantz
,
A.
,
Collin
,
R.
, and
Aldén
,
M.
,
2010
, “
Experimental and LES Investigations of a SGT-800 Burner in a Combustion Rig
,”
ASME
Paper No. GT2010-22688.10.1115/GT2010-22688
21.
Lörstad
,
D.
,
Lindholm
,
A.
,
Barhaghi
,
D. G.
,
Bonaldo
,
A.
,
Fedina
,
E.
,
Fureby
,
C.
,
Lantz
,
A.
,
Collin
,
R.
, and
Aldén
,
M.
,
2012
, “
Measurements and LES of a SGT-800 Burner in a Combustion Rig
,”
ASME
Paper No. GT2012-69936.10.1115/GT2012-69936
22.
Andersson
,
M.
,
Larsson
,
A.
, and
Larfeldt
,
J.
,
2013
, “
Co-Firing With Hydrogen in Industrial Gas Turbines
,” Svenskt Gastekniskt Center AB, Malmö, Sweden, Report No. 2013:256, http://www.sgc.se/ckfinder/userfiles/files/SGC256(1).pdf
23.
Hamedi
,
N.
,
2012
, “
Numerical Study of NOx and Flame Shape of a DLE Burner
,” M.S. thesis, Linköping University, Linköping, Sweden, available at: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-86412
24.
Dasch
,
C. J.
,
1992
, “
One-Dimensional Tomography: A Comparison of Abel, Onion-Peeling and Filtered Backprojection Methods
,”
Appl. Opt.
,
31
(
8
), pp.
1146
1152
.10.1364/AO.31.001146
25.
Daun
,
K. J.
,
Thomson
,
K. A.
,
Liu
,
F.
, and
Smallwood
,
G. J.
,
2006
, “
Deconvolution of Axisymmetric Flame Properties Using Tikhonov Regularization
,”
Appl. Opt.
,
45
(
19
), pp.
4638
4646
.10.1364/AO.45.004638
26.
Bechtel
,
J. H.
, and
Teets
,
R. E.
,
1979
, “
Hydroxyl and Its Concentration Profile in Methane-Air Flames
,”
Appl. Opt.
,
18
(
24
), pp.
4138
4144
.10.1364/AO.18.004138
27.
Donbar
,
J. M.
,
Driscoll
,
J. F.
, and
Carter
,
C. D.
,
2000
, “
Reaction Zone Structure in Turbulent Nonpremixed Jet Flames—From CH-OH PLIF Images
,”
Combust. Flame
,
122
(
1–2
), pp.
1
19
.10.1016/S0010-2180(00)00098-5
28.
Sadanandan
,
R.
,
Stöhr
,
M.
, and
Meier
,
W.
,
2008
, “
Simultaneous OH-PLIF and PIV Measurements in a Gas Turbine Model Combustor
,”
Appl. Phys. B
,
90
(
3–4
), pp.
609
618
.10.1007/s00340-007-2928-8
29.
Coffee
,
T. P.
,
1984
, “
Kinetic Mechanisms for Premixed, Laminar, Steady State Methane/Air Flames
,”
Combust. Flame
,
55
(
2
), pp.
161
170
.10.1016/0010-2180(84)90024-5
You do not currently have access to this content.