Ignition is a problem of fundamental interest with critical practical implications. While there are many studies of ignition of single injector configurations, the transient ignition of a full annular combustor has not been extensively investigated, mainly because of the added geometrical complexity. The present investigation combines simulations and experiments on a complete annular combustor. The setup, developed at EMC2 (Energétique Moléculaire et Macroscopique Combustion) Laboratory (Mesa, AZ), features sixteen swirl injectors and quartz walls allowing direct visualization of the flame. High speed imaging is used to record the space time flame structure and study the dynamics of the light-round process. On the numerical side, massively parallel computations are carried out in the large eddy simulation (LES) framework using the filtered tabulated (F-TACLES) flamelet model. Comparisons are carried out at different instants during the light-round process between experimental data and results of calculations. It is found that the simulation results are in remarkable agreement with experiments provided that the thermal effects at the walls are considered. Further analysis indicate that the flame burning velocity and flame front geometry are close to those found in the experiment. This investigation confirms that the LES framework used for these calculations and the selected combustion model are adequate for such calculations but that further work is needed to show that ignition prediction can be used reliably over a range of operating parameters.

References

References
1.
Beduneau
,
J.
,
Kim
,
B.
,
Zimmer
,
L.
, and
Ikeda
,
Y.
,
2003
, “
Measurements of Minimum Ignition Energy in Premixed Laminar Methane/Air Flow by Using Laser Induced Spark
,”
Combust. Flame
,
132
(
4
), pp.
653
665
.10.1016/S0010-2180(02)00536-9
2.
Champion
,
M.
,
Deshaies
,
B.
,
Joulin
,
G.
, and
Kinoshita
,
K.
,
1986
, “
Spherical Flame Initiation—Theory Versus Experiments for Lean Propane–Air Mixtures
,”
Combust. Flame
,
65
(
3
), pp.
319
337
.10.1016/0010-2180(86)90045-3
3.
Kurdyumov
,
V.
,
Blasco
,
J.
,
Sanchez
,
A.
, and
Linan
,
A.
,
2004
, “
On the Calculation of the Minimum Ignition Energy
,”
Combust. Flame
,
136
(
3
), pp.
394
397
.10.1016/j.combustflame.2003.12.007
4.
Baum
,
M.
, and
Poinsot
,
T.
,
1995
, “
Effects of Mean Flow on Premixed Flame Ignition
,”
Combust. Sci. Technol.
,
106
(
1–3
), pp.
19
39
.10.1080/00102209508907765
5.
Ko
,
Y.
,
Arpaci
,
V.
, and
Anderson
,
R.
,
1991
, “
Spark-Ignition of Propane Air Mixtures Near the Minimum Ignition Energy. 2. A Model Development
,”
Combust. Flame
,
83
(
1–2
), pp.
83
88
.10.1016/0010-2180(91)90205-P
6.
Sloane
,
T.
,
1992
, “
Numerical-Simulation of Electric Spark-Ignition in Methane Air Mixtures at Pressures Above One Atmosphere
,”
Combust. Sci. Technol.
,
86
(
1–6
), pp.
121
133
.10.1080/00102209208947191
7.
Granet
,
V.
,
Vermorel
,
O.
,
Lacour
,
C.
,
Enaux
,
B.
,
Dugue
,
V.
, and
Poinsot
,
T.
,
2012
, “
Large-Eddy Simulation and Experimental Study of Cycle-to-Cycle Variations of Stable and Unstable Operating Points in a Spark Ignition Engine
,”
Combust. Flame
,
159
(
4
), pp.
1562
1575
.10.1016/j.combustflame.2011.11.018
8.
Kravchik
,
T.
, and
Sher
,
E.
,
1994
, “
Numerical Modeling of Spark-Ignition and Flame Initiation in a Quiescent Methane–Air Mixture
,”
Combust. Flame
,
99
(
3–4
), pp.
635
643
.10.1016/0010-2180(94)90057-4
9.
Vermorel
,
O.
,
Richard
,
S.
,
Colin
,
O.
,
Angelberger
,
C.
,
Benkenida
,
A.
, and
Veynante
,
D.
,
2009
, “
Towards the Understanding of Cyclic Variability in a Spark Ignited Engine Using Multi-Cycle LES
,”
Combust. Flame
,
156
(
8
), pp.
1525
1541
.10.1016/j.combustflame.2009.04.007
10.
Mastorakos
,
E.
,
2009
, “
Ignition of Turbulent Non-Premixed Flames
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
57
97
.10.1016/j.pecs.2008.07.002
11.
Auzillon
,
P.
,
Gicquel
,
O.
,
Darabiha
,
N.
,
Veynante
,
D.
, and
Fiorina
,
B.
,
2012
, “
A Filtered Tabulated Chemistry Model for LES of Stratified Flames
,”
Combust. Flame
,
159
(
8, SI
), pp.
2704
2717
.10.1016/j.combustflame.2012.03.006
12.
Franzelli
,
B.
,
Riber
,
E.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulation of Combustion Instabilities in a Lean Partially Premixed Swirled Flame
,”
Combust. Flame
,
159
(
2
), pp.
621
637
.10.1016/j.combustflame.2011.08.004
13.
Freitag
,
M.
, and
Janicka
,
J.
,
2007
, “
Investigation of a Strongly Swirled Unconfined Premixed Flame Using LES
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1477
1485
.10.1016/j.proci.2006.07.225
14.
Menon
,
S.
, and
Patel
,
N.
,
2006
, “
Subgrid Modeling for Simulation of Spray Combustion in Large-Scale Combustors
,”
AIAA J.
,
44
(
4
), pp.
709
723
.10.2514/1.14875
15.
Moureau
,
V.
,
Domingo
,
P.
, and
Vervisch
,
L.
,
2011
, “
From Large-Eddy Simulation to Direct Numerical Simulation of a Lean Premixed Swirl Flame: Filtered Laminar Flame-PDF Modeling
,”
Combust. Flame
,
158
(
7
), pp.
1340
1357
.10.1016/j.combustflame.2010.12.004
16.
Pitsch
,
H.
,
2006
, “
Large-Eddy Simulation of Turbulent Combustion
,”
Ann. Rev. Fluid Mech.
,
38
, pp.
453
482
.10.1146/annurev.fluid.38.050304.092133
17.
Selle
,
L.
,
Lartigue
,
G.
,
Poinsot
,
T.
,
Koch
,
R.
,
Schildmacher
,
K.
,
Krebs
,
W.
,
Prade
,
B.
,
Kaufmann
,
P.
, and
Veynante
,
D.
,
2004
, “
Compressible Large Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes
,”
Combust. Flame
,
137
(
4
), pp.
489
505
.10.1016/j.combustflame.2004.03.008
18.
Gicquel
,
L. Y. M.
,
Staffelbach
,
G.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulations of Gaseous Flames in Gas Turbine Combustion Chambers
,”
Prog. Energy Combust. Sci.
,
38
(
6
), pp.
782
817
.10.1016/j.pecs.2012.04.004
19.
Jones
,
W. P.
, and
Tyliszczak
,
A.
,
2010
, “
Large Eddy Simulation of Spark Ignition in a Gas Turbine Combustor
,”
Flow Turbul. Combust.
,
85
(
3–4
), pp.
711
734
.10.1007/s10494-010-9289-9
20.
Sommerer
,
Y.
,
Galley
,
D.
,
Poinsot
,
T.
,
Ducruix
,
S.
,
Lacas
,
F.
, and
Veynante
,
D.
,
2004
, “
Large Eddy Simulation and Experimental Study of Flashback and Blow-Off in a Lean Partially Premixed Swirled Burner
,”
J. Turbul.
,
5
(
37
), pp.
1
3
.10.1088/1468-5248/5/1/037
21.
Boileau
,
M.
,
Staffelbach
,
G.
,
Cuenot
,
B.
,
Poinsot
,
T.
, and
Berat
,
C.
,
2008
, “
LES of an Ignition Sequence in a Gas Turbine Engine
,”
Combust. Flame
,
154
(
1–2
), pp.
2
22
.10.1016/j.combustflame.2008.02.006
22.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Self-Excited Circumferential Instabilities in a Model Annular Gas Turbine Combustor: Global Flame Dynamics
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3127
3134
.10.1016/j.proci.2012.05.061
23.
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Schuller
,
T.
,
Beaunier
,
J.
, and
Candel
,
S.
,
2013
, “
Ignition Dynamics of an Annular Combustor Equipped With Multiple Swirling Injectors
,”
Combust. Flame
,
160
(
8
), pp.
1398
1413
.10.1016/j.combustflame.2013.02.014
24.
Bach
,
E.
,
Kariuki
,
J.
,
Dawson
,
J. R.
, and
Mastorakos
,
E.
,
2013
, “
Spark Ignition of Single Bluff-Body Premixed Flames and Annular Combustors
,”
AIAA
Paper No. 2013-1182.10.2514/6.2013-1182
25.
Moureau
,
V.
,
Lartigue
,
G.
,
Sommerer
,
Y.
,
Angelberger
,
C.
,
Colin
,
O.
, and
Poinsot
,
T.
,
2005
, “
Numerical Methods for Unsteady Compressible Multi-Component Reacting Flows on Fixed and Moving Grids
,”
J. Comput. Phys.
,
202
(
2
), pp.
710
736
.10.1016/j.jcp.2004.08.003
26.
Gullbrand
,
J.
, and
Chow
,
F.
,
2003
, “
The Effect of Numerical Errors and Turbulence Models in Large-Eddy Simulations of Channel Flow, With and Without Explicit Filtering
,”
J. Fluid Mech.
,
495
, pp.
323
341
.10.1017/S0022112003006268
27.
Kravchenko
,
A.
, and
Moin
,
P.
,
1997
, “
On the Effect of Numerical Errors in Large Eddy Simulations of Turbulent Flows
,”
J. Comput. Phys.
,
131
(
2
), pp.
310
322
.10.1006/jcph.1996.5597
28.
Colin
,
O.
, and
Rudgyard
,
M.
,
2000
, “
Development of High-Order Taylor–Galerkin Schemes for LES
,”
J. Comput. Phys.
,
162
(
2
), pp.
338
371
.10.1006/jcph.2000.6538
29.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
30.
Fiorina
,
B.
,
Vicquelin
,
R.
,
Auzillon
,
P.
,
Darabiha
,
N.
,
Gicquel
,
O.
, and
Veynante
,
D.
,
2010
, “
A Filtered Tabulated Chemistry Model for LES of Premixed Combustion
,”
Combust. Flame
,
157
(
3
), pp.
465
475
.10.1016/j.combustflame.2009.09.015
31.
Charlette
,
F.
,
Meneveau
,
C.
, and
Veynante
,
D.
,
2002
, “
A Power-Law Flame Wrinkling Model for LES of Premixed Turbulent Combustion. Part II: Dynamic Formulation
,”
Combust. Flame
,
131
(
1–2
), pp.
181
197
.10.1016/S0010-2180(02)00401-7
32.
Vicquelin
,
R.
,
Fiorina
,
B.
,
Payet
,
S.
,
Darabiha
,
N.
, and
Gicquel
,
O.
,
2011
, “
Coupling Tabulated Chemistry With Compressible CFD Solvers
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1481
1488
.10.1016/j.proci.2010.05.036
33.
Cordier
,
M.
,
Vandel
,
A.
,
Renou
,
B.
,
Cabot
,
G.
,
Boukhalfa
,
M. A.
,
Esclapez
,
L.
,
Barré
,
D.
,
Riber
,
E.
,
Cuenot
,
B.
, and
Gicquel
,
L.
,
2013
, “
Experimental and Numerical Analysis of an Ignition Sequence in a Multiple-Injectors Burner
,”
ASME
Paper No. GT2013-94257.10.1115/GT2013-94681
You do not currently have access to this content.