Gas-path measurements used to assess the health condition of an engine are corrupted by noise. Generally, a data cleaning step occurs before proceeding with fault detection and isolation. Classical linear filters such as the EWMA filter are traditionally used for noise removal. Unfortunately, these low-pass filters distort trend shifts indicative of faults, which increases the detection delay. The present paper investigates two new approaches to nonlinear filtering of time series. On the one hand, the synthesis approach reconstructs the signal as a combination of elementary signals chosen from a predefined library. On the other hand, the analysis approach imposes a constraint on the shape of the signal (e.g., piecewise constant). Both approaches incorporate prior information about the signal in a different way, but they lead to trend filters that are very capable at noise removal while preserving at the same time sharp edges in the signal. This is highlighted through the comparison with a classical linear filter on a batch of synthetic data representative of typical engine fault profiles.

References

References
1.
Rajamani
,
R.
,
Wang
,
J.
, and
Jeong
,
K. Y.
,
2004
, “
Condition-Based Maintenance for Aircraft Engines
,”
ASME
Paper No. GT2004-54127.10.1115/GT2004-54127
2.
Volponi
,
A. J.
,
2003
, “
Foundation of Gas Path Analysis (Part I and II)
,” (von Karman Institute Lecture Series, number 01 in Gas Turbine Condition Monitoring and Fault Diagnosis), von Karman Institute, Rhode-St-Genese, Belgium.
3.
Ganguli
,
R.
,
2002
, “
Data Rectification and Detection of Trend Shifts in Jet Engine Path Measurements Using Median Filters and Fuzzy Logic
,”
ASME J. Eng. Gas Turbines Power
,
124
(
4
), pp.
809
816
.10.1115/1.1470482
4.
DePold
,
H.
, and
Gass
,
F.
,
1999
, “
The Application of Expert Systems and Neural Networks to Gas Turbine Prognostics and Diagnostics
,”
ASME J. Eng. Gas Turbines Power
,
121
(
4
), pp.
607
612
.10.1115/1.2818515
5.
Simon
,
D. L.
,
Bird
,
J.
,
Davison
,
C.
,
Volponi
,
A. J.
, and
Iverson
,
R. E.
,
2008
, “
Benchmarking Gas Path Diagnostic Methods: A Public Approach
,”
ASME
Paper No. GT2008-51360.10.1115GT2008-51360
6.
Verbist
,
M.
,
Visser
,
W.
, and
van Buijtenen
,
J. P.
,
2013
, “
Experience With Gas-Path Analysis for On-Wing Turbofan Condition Monitoring
,”
ASME
Paper No. GT2013-95739.10.1115/GT2013-95739
7.
Shumway
,
R.
, and
Stoffer
,
D.
,
2010
,
Time Series Analysis and Its Applications
(Springer Texts in Statistics),
3rd ed.
,
Springer
,
New York
.
8.
Harvey
,
A.
, and
Trimbur
,
T.
,
2008
, “
Trend Estimation and the Hodrick–Prescott Filter
,”
J. Jpn Stat. Soc.
,
38
(
1
), pp.
41
49
.10.14490/jjss.38.41
9.
Baillie
,
R.
, and
Chung
,
S.-K.
,
2002
, “
Modeling and Forecasting From Trend-Stationary Long Memory Models With Applications to Climatology
,”
Int. J. Forecasting
,
18
(
2
), pp.
215
226
.10.1016/S0169-2070(01)00154-6
10.
Chen
,
A.
, and
Elsayed
,
E.
,
2002
, “
Design and Performance Analysis of the Exponentially Weighted Moving Average Mean Estimate for Processes Subject to Random Step Changes
,”
Technometrics
,
44
(
4
), pp.
1
11
.10.1198/004017002188618572
11.
Ganguli
,
R.
, and
Dan
,
B.
,
2004
, “
Trend Shift Detection in Jet Engine Gas Path Measurements Sing Cascaded Recursive Median Filter With Gradient and Laplacian Edge Detector
,”
ASME J. Eng. Gas Turbines Power
,
126
(
1
), pp.
55
61
.10.1115/1.1635400
12.
Surrender
,
V.
, and
Ganguli
,
R.
,
2005
, “
Adaptive Myriad Filter for Improved Gas Turbine Condition Monitoring Using Transient Data
,”
ASME J. Eng. Gas Turbines Power
,
127
(
2
), pp.
329
339
.10.1115/1.1850491
13.
Uday
,
P.
, and
Ganguli
,
R.
,
2010
, “
Jet Engine Health Signal Denoising Using Optimally Weighted Recursive Median Filter
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
041601
.10.1115/1.3200907
14.
Elad
,
M.
,
Milanfar
,
P.
, and
Rubinstein
,
R.
,
2007
, “
Analysis Versus Synthesis in Signal Priors
,”
Inverse Probl.
,
23
(
3
), pp.
947
968
.10.1088/0266-5611/23/3/007
15.
Borguet
,
S.
, and
Léonard
,
O.
,
2010
, “
A Sparse Estimation Approach to Fault Isolation
,”
ASME J. Eng. Gas Turbines Power
,
132
(
2
), p.
021601
.10.1115/1.3156815
16.
Borguet
,
S.
, and
Léonard
,
O.
,
2011
, “
Constrained Sparse Estimation for Improved Fault Isolation
,”
ASME J. Eng. Gas Turbines Power
,
133
(
12
), p.
121602
.10.1115/1.4004013
17.
Gustafsson
,
F.
,
2000
,
Adaptive Filtering and Change Detection
,
Wiley
,
New York
.
18.
Kim
,
S.-J.
,
Koh
,
K.
,
Boyd
,
S.
, and
Gorinevsky
,
D.
,
2009
, “
ℓ1 Trend Filtering
,”
SIAM Rev.
,
51
(
2
), pp.
339
360
.10.1137/070690274
19.
Tibshirani
,
R.
, and
Taylor
,
J.
,
2011
, “
The Solution Path of the Generalized Lasso
,”
Ann. Stat.
,
39
(
3
), pp.
1335
1371
.10.1214/11-AOS878
20.
Fuchs
,
J. J.
,
2004
, “
On Sparse Representations in Arbitrary Redundant Basis
,”
IEEE Trans. Inf. Theory
,
50
(
6
), pp.
1341
1344
.10.1109/TIT.2004.828141
21.
Chen
,
S.
,
Donoho
,
D.
, and
Saunders
,
M.
,
1998
, “
Atomic Decomposition by Basis Pursuit
,”
SIAM J. Sci. Comput.
,
20
(
1
), pp.
33
61
.10.1137/S1064827596304010
22.
Malioutov
,
D.
,
Cetin
,
M.
, and
Willsky
,
A.
,
2005
, “
A Sparse Signal Reconstruction Perspective for Source Localization With Sensor Arrays
,”
IEEE Trans. Signal Process.
,
53
(
8
), pp.
3010
3022
.10.1109/TSP.2005.850882
23.
Fuchs
,
J. J.
,
2004
, “
Recovery of Exact Sparse Representations in the Presence of Noise
,”
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '04)
, Montreal, Canada, May 17–21, pp.
533
536
.10.1109/ICASSP.2004.1326312
24.
Fletcher
,
R.
,
2000
,
Practical Methods of Optimization
,
Wiley
,
New York
.
25.
Simon
,
D. L.
,
2010
, “
Propulsion Diagnostic Method Evaluation Strategy (ProDIMES) User's Guide
,” NASA Glenn Research Center, Cleveland, OH, Technical Memorandum TM-2010-215840.
26.
Meszaros
,
C.
,
1996
, “
Fast Cholesky Factorization for Interior Point Methods of Linear Programming
,”
Comput. Math. Appl.
,
31
(
4, 5
), pp.
49
54
.10.1016/0898-1221(95)00215-4
27.
Gorinevsky
,
D.
,
2008
, “
Efficient Filtering Using Monotonic Walk Model
,”
IEEE American Control Conference
, Seattle, WA, June 11–13, pp. 2816–2821.10.1109/ACC.2008.4586920
28.
Borguet
,
S.
, and
Léonard
,
O.
,
2008
, “
A Sensor-Fault-Tolerant Diagnosis Tool Based on a Quadratic Programming Approach
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), p.
021605
.10.1115/1.2772637
You do not currently have access to this content.