In the present work, a computational optimization study of thrust bearings lubricated with spatially varying viscosity lubricants is presented, with the main goal of minimizing friction coefficient. In practice, spatial variation of viscosity could be achieved by utilizing electrorheological or magnetorheological fluids. The bearings are modeled as two-dimensional (2D) channels, consisting of a smooth moving wall (rotor) and a parallel or inclined stationary wall (stator), which can be (i) smooth, (ii) partially textured with rectangular dimples, and (iii) smooth and partially hydrophobic. The bearings are considered to be operated with an ideal lubricant that exhibits different values of viscosity in two distinct regions of the fluid domain: a high viscosity area is considered at the channel inflow, with the viscosity acquiring a reference (low) value farther downstream. The flow field is calculated from the numerical solution of the Navier–Stokes equations for 2D incompressible isothermal flow. The bearing geometry is defined parametrically. Three optimization problems are formulated, corresponding to: (I) a conventional smooth converging slider, (II) a parallel slider with artificial surface texturing at part of the stator surface, and (III) a parallel or converging slider with hydrophobic properties at part of the stator surface. Here, the geometry parameters, as well as the increased viscosity value and the corresponding application regime, form the problem design variables. Bearings are optimized for maximum load capacity and minimum friction coefficient. Optimal solutions are compared against corresponding ones for operation with constant viscosity. It is demonstrated that, by using spatially varying viscosity, a substantial reduction of friction coefficient can be achieved, for all optimization problems considered. This decrease is shown to be a consequence of a sharp pressure rise in the high viscosity regime, resulting in a corresponding rise in load capacity, accompanied by a less pronounced increase in wall shear stress, and thus in total friction force.

References

References
1.
Brizmer
,
V.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2003
, “
A Laser Surface Textured Parallel Thrust Bearing
,”
Tribol. Trans.
46
(
3
), pp.
397
403
.10.1080/10402000308982643
2.
Pascovici
,
M. D.
,
Cicone
,
T.
,
Fillon
,
M.
, and
Dobrica
,
M. B.
,
2009
, “
Analytical Investigation of a Partially Textured Parallel Slider
,”
Proc. IMechE Part J
,
223
(
2
), pp.
151
158
.10.1243/13506501JET470
3.
Cupillard
,
S.
,
Cervantes
,
M. J.
, and
Glavatskih
,
S.
,
2008
, “
Pressure Buildup Mechanism in a Textured Inlet of a Hydrodynamic Contact
,”
ASME J. Tribol.
,
130
(
2
), p.
21701
.10.1115/1.2805426
4.
Han
,
J.
,
Fang
,
L.
,
Sun
,
J.
, and
Ge
,
S.
,
2010
, “
Hydrodynamic Lubrication of Microdimple Textured Surface Using Three-Dimensional CFD
,”
Tribol. Trans.
,
53
(
6
), pp.
860
870
.10.1080/10402004.2010.496070
5.
Buscaglia
,
G. C.
,
Ausas
,
R. F.
, and
Jai
,
M.
,
2006
, “
Optimization Tools in the Analysis of Micro-Textured Lubricated Devices
,”
Inverse Probl. Sci. Eng.
,
14
(
4
), pp.
365
378
.10.1080/17415970600573452
6.
Dobrica
,
M. B.
,
Fillon
,
M.
,
Pascovici
,
M. D.
, and
Cicone
,
T.
,
2010
, “
Optimizing Surface Texture for Hydrodynamic Lubricated Contacts Using a Mass-Conserving Numerical Approach
,”
Proc. IMechE Part J
,
224
(
8
), pp.
737
750
.10.1243/13506501JET673
7.
Papadopoulos
,
C. I.
,
Nikolakopoulos
,
P. G.
, and
Kaiktsis
,
L.
,
2011
, “
Evolutionary Optimization of Micro-Thrust Bearings With Periodic Partial Trapezoidal Surface Texturing
,”
ASME J. Eng. Gas Turbines Power
,
133
(
1
), p.
012301
.10.1115/1.4001990
8.
Papadopoulos
,
C. I.
,
Efstathiou
,
E. E.
,
Nikolakopoulos
,
P. G.
, and
Kaiktsis
,
L.
,
2011
, “
Geometry Optimization of Textured Three-Dimensional Micro-Thrust Bearings
,”
ASME J. Tribol.
,
133
(
4
), p.
041702
.10.1115/1.4004990
9.
Etsion
,
I.
,
Halperin
,
G.
,
Brizmer
,
V.
, and
Kligerman
,
Y.
,
2004
, “
Experimental Investigation of Laser Surface Textured Parallel Thrust Bearings
,”
Tribol. Lett.
,
17
(
2
), pp.
295
300
.10.1023/B:TRIL.0000032467.88800.59
10.
Marian
,
V. G.
,
Gabriel
,
D.
,
Knoll
,
G.
, and
Filippone
,
S.
,
2011
, “
Theoretical and Experimental Analysis of a Laser Textured Thrust Bearing
,”
Tribol. Lett.
,
44
(
3
), pp.
335
343
.10.1007/s11249-011-9857-8
11.
Kovalchenko
,
A.
,
Ajayi
,
O.
,
Erdemir
,
A.
,
Fenske
,
G.
, and
Etsion
,
I.
,
2005
, “
The Effect of Laser Surface Texturing on Transitions in Lubrication Regimes During Unidirectional Sliding Contact
,”
Tribol. Int.
,
38
(
3
), pp.
219
225
.10.1016/j.triboint.2004.08.004
12.
Papadopoulos
,
C. I.
,
Nikolakopoulos
,
P. G.
, and
Kaiktsis
,
L.
,
2012
, “
Characterization of Stiffness and Damping in Textured Sector Pad Micro-Thrust Bearings Using Computational Fluid Dynamics
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
112502
.10.1115/1.4007320
13.
Vinogradova
,
O. I.
,
1999
, “
Slippage of Water Over Hydrophobic Surfaces
,”
Int. J. Miner. Process.
,
56
(
1–4
), pp.
31
60
.10.1016/S0301-7516(98)00041-6
14.
Schmatko
,
T.
,
Hervet
,
H.
, and
Le
,
L.
,
2006
, “
Effect of Nanometric-Scale Roughness on Slip at the Wall of Simple Fluids
,”
Langmuir
,
22
(16)
, pp.
6843
6850
.10.1021/la060061w
15.
Spikes
,
H.
, and
Granick
,
S.
,
2003
, “
Equation for Slip of Simple Liquids at Smooth Solid Surfaces
,”
Langmuir
,
19
(12)
, pp.
5065
5071
.10.1021/la034123j
16.
Salant
,
R. F.
, and
Fortier
,
A. E.
,
2004
, “
Numerical Analysis of a Slider Bearing With a Heterogeneous Slip/No-Slip Surface
,”
Tribol. Trans.
,
47
(3)
, pp.
328
334
.10.1080/05698190490455348
17.
Wu
,
C. W.
,
Ma
,
G. J.
,
Zhou
,
P.
, and
Wu
,
C. D.
,
2006
, “
Low Friction and High Load Support Capacity of Slider Bearing With a Mixed Slip Surface
,”
ASME J. Tribol.
,
128
(4)
, pp.
904
907
.10.1115/1.2345419
18.
Choo
,
J. H.
,
Glovnea
,
R. P.
,
Forrest
,
A. K.
, and
Spikes
,
H. A.
,
2007
, “
A Low Friction Bearing Based on Liquid Slip at the Wall
,”
ASME J. Tribol.
,
129
(3)
, pp.
611
620
.10.1115/1.2736704
19.
Ma
,
G.
,
Wu
,
C.
, and
Zhou
,
P.
,
2007
, “
Hydrodynamics of Slip Wedge and Optimization of Surface Slip Property
,”
Sci. China Ser. G Phys. Mech. Astron.
,
50
(3)
, pp.
321
330
.10.1007/s11433-007-0034-x
20.
Rao
,
T. V. V. L. N.
,
2010
, “
Analysis of Single-Grooved Slider and Journal Bearing With Partial Slip Surface
,”
ASME J. Tribol.
,
132
(1)
, p.
014501
.10.1115/1.4000276
21.
Fatu
,
A.
,
Patrick
,
M.
, and
Mohamed
,
H.
,
2011
, “
Wall Slip Effects in (Elasto) Hydrodynamic Journal Bearings
,”
Tribol. Int.
,
44
(
7–8
), pp.
868
877
.10.1016/j.triboint.2011.03.003
22.
Tauviqirrahman
,
M.
,
Ismail
,
R.
,
Jamari
,
J.
, and
Schipper
,
D. J.
,
2012
, “
A Study of Surface Texturing and Boundary Slip on Improving the Load Support of Lubricated Parallel Sliding Contacts
,”
Acta Mech.
,
224
(2)
, pp.
365
381
.10.1007/s00707-012-0752-7
23.
Santos
,
I. F.
,
2011
, “
Trends in Controllable Oil Film Bearings
,”
IUTAM Symposium on Emerging Trends in Rotor Dynamics
, New Delhi, India, Mar. 23–26, pp.
185
199
.
24.
Dimarogonas
,
A. D.
, and
Kollias
,
A.
,
1992
, “
Electrorheological Fluid-Controlled `Smart' Journal Bearings
,”
Tribol. Trans.
35
(4)
, pp.
611
618
.10.1080/10402009208982163
25.
Nikolakopoulos
,
P. G.
, and
Papadopoulos
,
C. A.
,
1998
, “
Controllable High Speed Journal Bearings, Lubricated With Electrorheological Fluids. An Analytical and Experimental Approach
,”
Tribol. Int.
,
31
(5)
, pp.
225
234
.10.1016/S0301-679X(98)00025-5
26.
Stanway
,
R.
,
Johnson
,
J. L.
, and
El Wahed
,
A. K.
,
1996
, “
Applications of Electro-Rheological Fluids in Vibration Control: A Survey
,”
Smart Mater. Struct.
,
5
(4)
, pp.
464
482
.10.1088/0964-1726/5/4/011
27.
Ursescu
,
Α.
,
2005
, “
Channel Flow of Electrorheological Fluids Under an Inhomogeneous Electric Field
,” Ph.D. thesis, Technical University of Darmstadt, Darmstadt, Germany.
28.
Dadouche
,
A.
,
Fillon
,
M.
, and
Dmochowski
,
W.
,
2006
, “
Performance of a Hydrodynamic Fixed Geometry Thrust Bearing: Comparison Between Experimental Data and Numerical Results
,”
Tribol. Trans.
,
49
(3)
, pp.
419
426
.10.1080/10402000600781457
29.
Cahon
,
S.
,
Melab
,
N.
, and
Talbi
,
E. G.
,
2004
, “
ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics
,”
J. Heuristics
,
10
(
3
), pp.
357
380
.10.1023/B:HEUR.0000026900.92269.ec
30.
Deb
,
K.
,
Pratap
,
A.
,
Agrawal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
You do not currently have access to this content.