In the present work a comprehensive study of turbocharger heat transfer phenomena is discussed, showing their relevance compared to gas enthalpy variations through the turbomachinery. The study provides an experimental methodology to consider the different heat fluxes in the turbocharger and modeling them by means of a lumped capacitance heat transfer model (HTM). The input data required for the model are obtained experimentally by a proper combination of both steady and transient tests. These tests are performed in different test benches, in which incompressible fluids (oil) and compressible fluids (gas) are used in a given sequence. The experimental data allows developing heat transfer correlations for the different turbocharger elements. These correlations take into account all the possible heat fluxes, discriminating between internal and external heat transfer. In order to analyze the relative importance of heat transfer phenomena in the predictability of the turbocharger performance and the different related variables; model results, in hot and cold conditions, have been compared with those provided by the standard technique, consisting on using look up maps (LUM) of the turbocharger. The analysis of these results evidences the highly diabatic operative areas of the turbocharger and it provides clearly ground rules for using hot or cold turbocharger maps. In addition, paper discussion advises about using or not aHTM, depending on the turbocharger variables and the operative conditions that one desires to predict. Paper concludes that an accurate prediction of gas temperatures at turbine and compressor outlet and of fluid temperatures at water and oil ports outlet is not always possible without considering heat transfer phenomena in the turbocharger.

References

References
1.
Baines
,
N.
,
Wygant
,
K.
, and
Dris
,
A.
,
2009
, “
The Analysis of Heat Transfer in Automotive Turbochargers
,”
ASME
Paper No. GT2009-59618.10.1115/GT2009-59618
2.
Serrano
,
J.
,
Olmeda
,
P.
,
Arnau
,
F.
, and
Reyes-Belmonte
,
M.
,
2013
, “
Importance of Heat Transfer Phenomena in Small Turbochargers for Passenger Car Applications
,”
SAE Int. J. Eng.
,
6
(
2
), pp. 716–728.10.4271/2013-01-0576
3.
Sirakov
,
B.
, and
Casey
,
M.
,
2013
, “
Evaluation of Heat Transfer Effects on Turbocharger Performance
,”
ASME J. Turbomach.
,
135
(
2
), p.
021011
.10.1115/1.4006608
4.
Shaaban
,
S.
,
Seume
,
J.
,
Berndt
,
R.
,
Pucher
,
H.
, and
Linnhoff
,
H. J.
,
2006
, “
Part-Load Performance Prediction of Turbocharged Engines
,”
IMechE 8th International Conference on Turbochargers and Turbocharging
, London, May 17–18, Paper No. C647/019, pp. 131–144.10.1016/B978-1-84569-174-5.50013-0
5.
Romagnoli
,
A.
, and
Martinez-Botas
,
R.
,
2013
, “
Heat Transfer Analysis in a Turbocharger Turbine: An Experimental and Computational Evaluation
,”
Appl. Therm. Eng.
,
38
, pp.
58
77
.10.1016/j.applthermaleng.2011.12.022
6.
Bohn
,
D.
,
Moritz
,
N.
, and
Wol
,
M.
,
2003
, “
Conjugate Flow and Heat Transfer Investigation of a Turbo Charger: Part II—Experimental Results
,”
ASME
Paper No. GT2003-38449.10.1115/GT2003-38449
7.
Bet
,
F.
, and
Seider
,
G.
,
2011
, “
Thermal Management of a Turbocharger for Unsteady Operation
,”
STAR European Conference 2011
, Noordwijk, Netherlands, Mar. 22–23.
8.
Serrano
,
J. R.
,
Olmeda
,
P.
,
Páez
,
A.
, and
Vidal
,
F.
,
2010
, “
An Experimental Procedure to Determine Heat Transfer Properties of Turbochargers
,”
Meas. Sci. Technol.
,
21
(3)
, p.
035109
.10.1088/0957-0233/21/3/035109
9.
Serrano
,
J. R.
,
Olmeda
,
P.
,
Tiseira
,
A.
,
García-Cuevas
,
L. M.
, and
Lefebvre
,
A.
,
2013
, “
Theoretical and Experimental Study of Mechanical Losses in Automotive Turbochargers
,”
Energy
,
55
, pp.
888
898
.10.1016/j.energy.2013.04.042
10.
Society of Automotive Engineers Inc.
,
1995
, “
Supercharger Testing Standard
,” SAE Standard No. J1723.
11.
Society of Automotive Engineers Inc.
,
1995
, “
Turbocharger Gas Stand Test Code
,” SAE Standard No. J1826.
12.
Cormerais
,
J.
,
Hetet
,
J. F.
,
Chesse
,
P.
, and
Maiboom
,
A.
,
2006
, “
Heat Transfers Characterisations in a Turbocharger: Experiments and Correlations
,”
ASME
Paper No. ICES2006-1324.10.1115/ICES2006-1324
13.
Serrano
,
J. R.
,
Arnau
,
F. J.
,
Fajardo
,
P.
,
Reyes-Belmonte
,
M.
, and
Vidal
,
F.
,
2012
, “
Contribution to the Modeling and Understanding of Cold Pulsating Flow Influence in the Efficiency of Small Radial Turbines for Turbochargers
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
102701
.10.1115/1.4007027
14.
Reyes-Belmonte
,
M.
,
2013
, “
Contribution to the Experimental Characterization and 1-D Modelling of Turbochargers for IC Engines
,” Ph.D. thesis, Universitat Politècnica de València, Valencia, Spain.
15.
Serrano
,
J. R.
,
Olmeda
,
P.
,
Arnau
,
F. J.
,
Reyes-Belmonte
,
M. A.
,
Lefebvre
,
A.
, and
Tartoussi
,
H.
, “
A Study on the Internal Convection on Small Turbochargers
,”
Energy
(submitted).
16.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
6th ed.
,
Wiley, Inc.
,
Hoboken, NJ
.
17.
Payri
,
F.
,
Olmeda
,
P.
,
Arnau
,
F. J.
,
Dombrovsky
,
A.
, and
Smith
,
L.
,
2014
, “
External Heat Losses in Small Turbochargers: Model and Experiments
,”
Energy
,
71
, pp.
534
546
.10.1016/j.energy.2014.04.096
You do not currently have access to this content.