Effusion cooling represents one of the most innovative techniques to limit and control the metal temperature of combustors liner, and recently, attention has been paid by the scientific community on the characterization and the definition of design practices of such devices. Most of these studies were focused on the heat transfer on the hot side of effusion cooling plates, while just few contributions deal with the effusion plates cold side convective cooling. This paper reports a numerical survey aimed at the characterization of the convective cooling at the effusion plates cold side. Several effusion holes spacing is accounted for in conjunction with representative operating conditions. The study led to the development of an empirical correlation for the prediction of the cold side heat transfer coefficient enhancement factor, EF: it expresses the EF related to each extraction hole as a function of the pressure ratio β and the effusion plate porosity factor σ.

References

References
1.
Schulz
,
A.
,
2001
, “
Combustor Liner Cooling Technology in Scope of Reduced Pollutant Formation and Rising Thermal Efficiencies
,”
Heat Transfer Gas Turbine Syst.
,
934
(
1
), pp.
135
146
.
2.
Gustafsson
,
K. M. B.
, and
Johansson
,
T.
,
2001
, “
An Experimental Study of Surface Temperature Distribution on Effusion-Cooled Plates
,”
ASME J. Gas Turbines Power
,
123
(
2
), pp.
308
316
.
3.
Goldstein
,
R. J.
, and
Taylor
,
J. R.
,
1982
, “
Mass Transfer in the Neighborhood of Jets Entering a Crossflow
,”
ASME J. Heat Transfer
,
104
(
4
), pp.
715
721
.
4.
Baldauf
,
S.
,
Schulz
,
A.
,
Wittig
,
S.
, and
Scheurlen
,
M.
,
2002
, “
Heat Flux Reduction From Film Cooling and Correlation of Heat Transfer Coefficients From Thermographic Measurements at Enginelike Conditions
,”
ASME J. Turbomach.
,
124
(
4
), pp.
699
709
.
5.
Andreini
,
A.
,
Facchini
,
B.
,
Picchi
,
A.
,
Tarchi
,
L.
, and
Turrini
,
F.
,
2014
, “
Experimental and Theoretical Investigation of Thermal Effectiveness in Multi-Perforated Plates for Combustor Liner Effusion Cooling
,”
ASME J. Turbomach.
,
136
(
9
), p.
091003.
6.
Han
,
J.-C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
1st ed.
,
Taylor & Francis
,
Oxford, UK
.
7.
Gerendas
,
M.
,
Höschler
,
K.
, and
Schilling
,
T.
,
2001
, “
Development and Modeling of Angles Effusion Cooling for the BR715 Low Emission Staged Combustor Core Demonstrator
,”
RTO AVT Symposium on Advanced Flow Management: Part B—Heat Transfer and Cooling in Propulsion and Power Systems
, NATO Research and Technology Organisation.
8.
Byerley
,
A. R.
,
1989
, “
Heat Transfer Near the Entrance to a Film Cooling Hole in a Gas Turbine Blade
,” Ph.D. thesis, Merton College, Oxford, UK.
9.
Ainsworth
,
R. W.
, and
Jones
,
T. V.
,
1979
, “
Measurements of Heat Transfer in Circular, Rectangular and Triangular Ducts, Representing Typical Turbine Blade Internal Cooling Passages Using Transient Techniques
,”
ASME
Paper No. 79-GT-40.
10.
Sparrow
,
J. C.
, and
Kemink
,
R. G.
,
1979
, “
Heat Transfer Downstream of a Fluid Withdrawal Branch in a Tube
,”
ASME J Heat Transfer
,
101
(
1
), pp.
23
28
.
11.
Sparrow
,
J. C.
, and
Ortiz
,
M. C.
,
1982
, “
Heat Transfer Coefficients for the Upstream Face of a Perforated Plate Positioned Normal to an Oncoming Flow
,”
Int. J. Heat Mass Transfer
,
25
(
1
), pp.
127
135
.
12.
Cho
,
H. H.
,
Jabbari
,
M. Y.
, and
Goldstein
,
R. J.
,
1997
, “
Experimental Mass (Heat) Transfer in and Near a Circular Hole in a Flat Plate
,”
Int. J. Heat Mass Transfer
,
40
(
10
), pp.
2431
2443
.
13.
Dorignac
,
E.
,
Vullierme
,
J. J.
,
Broussely
,
M.
,
Foulon
,
C.
, and
Mokkadem
,
M.
,
2005
, “
Experimental Heat Transfer on the Windward Surface of a Perforated Flat Plate
,”
Int. J. Therm. Sci.
,
44
(
9
), pp.
885
893
.
14.
Cottin
,
G.
,
Savary
,
N.
,
Laroche
,
E.
, and
Millan
,
P.
,
2011
, “
Modeling of the Heat Flux for Multi-Hole Cooling Applications
,”
ASME
Paper No. GT2011-46330.
15.
Andreini
,
A.
,
Facchini
,
B.
,
Mazzei
,
L.
,
Bellocci
,
L.
, and
Turrini
,
F.
,
2014
, “
Assessment of Aero-Thermal Design Methodology for Effusion Cooled Lean Burn Annular Combustors
,”
ASME
Paper No. GT2014-26764.
16.
Rohsenow
,
M. W.
,
Hartnett
,
J. P.
, and
Cho
,
Y. I.
,
1998
,
Handbook of Heat Transfer
,
3rd ed.
,
McGraw-Hill Handbooks
,
Maidenhead, UK
.
17.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables—Part I: Model Formulation
,”
ASME J. Turbomach.
,
128
(
3
), pp.
413
422
.
18.
Wurm
,
B.
,
Schulz
,
A.
,
Bauer
,
H.-J.
, and
Gerendas
,
M.
,
2013
, “
Cooling Efficiency for Assessing the Cooling Performance of an Effusion Cooled Combustor Liner
,”
ASME
Paper No. GT2013-94304.
19.
Andreini
,
A.
,
Caciolli
,
G.
,
Soghe
,
R. D.
,
Facchini
,
B.
, and
Mazzei
,
L.
,
2014
, “
Numerical Investigation on the Heat Transfer Enhancement Due to Coolant Extraction on the Cold Side of Film Cooling Holes
,”
ASME
Paper No. GT2014-25460.
20.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1980
,
Convective Heat and Mass Transfer
,
McGraw-Hill Book Company
,
Maidenhead, UK
.
21.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2006
,
Fundamentals of Heat and Mass Transfer
,
6th ed.
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.