There have been numerous studies reporting film effectiveness for film rows in isolation, which have led to correlations that are used for preliminary design. Many applications require multiple film cooling rows. Although there is some published data which deal with the combined effect of multiple rows, in most design situations the additive effect is computed using correlations for single rows. The most widely used method is the Sellers superposition method. In many applications, the method gives accurate results. Although the method is to some extent physically based, energy is not conserved within the model, and in certain situations this limitation can be shown to lead to an underprediction of the film effectiveness. In this paper, a new energy-based method for predicting the additive effect of multiple film cooling rows is outlined. The physical basis and limitations of the model are discussed. Predictions conducted using the new method are compared with computational fluid dynamics (CFD) data and contrasted with the Sellers method. In situations where energy conservation is required to avoid underprediction of effectiveness the method is shown to be advantageous.

References

References
1.
Wieghardt
,
K.
,
1946
, “
Hot-Air Discharge of De-Icing
,”
AAF, Louisville, KY
.
2.
Chin
,
J. H.
,
Skirvin
,
S. C.
,
Hayes
,
L. E.
, and
Burggraf
,
F.
,
1961
, “
Film Cooling With Multiple Slots and Louvers
,”
ASME J. Heat Transfer
,
83
(
3
), pp.
281
291
.
3.
Sellers
,
J. P.
, Jr.
,
1963
, “
Gaseous Film Cooling With Multiple Injection Stations
,”
AIAA J.
,
1
(
9
), pp.
2154
2156
.
4.
Le Grivès
,
E.
, and
Nicolas
,
J. J.
,
1977
, “
Méthode Nouvelle de Calcul de L'Efficacité de Refroidissement des Aubes de Turbine par Film D'Air
,”
AGARD Conference Paper
, Vol.
229
, pp.
36-1
36-12
.
5.
Andreini
,
A.
,
Carcasci
,
C.
,
Gori
,
S.
, and
Surace
,
M.
,
2005
, “
Film Cooling System Numerical Design: Adiabatic and Conjugate Analysis
,”
ASME
Paper No. HT2005-72042.
6.
Zhu
,
H.
,
Guo
,
T.
, and
Xu
,
D.
,
2008
, “
Investigation of Film Cooling and Superposition Method for Double Row Dustpan-Shaped Holes
,”
Heat Transfer—Asian Res.
,
37
(
4
), pp.
208
217
.
7.
Mayle
,
R. E.
, and
Camarata
,
F. J.
,
1975
, “
Multihole Cooling Film Effectiveness and Heat Transfer
,”
ASME J. Heat Transfer
,
97
(
4
), pp.
534
538
.
8.
Sasaki
,
M.
,
Takashara
,
K.
,
Kumagai
,
T.
, and
Hamano
,
M.
,
1979
, “
Film Cooling Effectiveness for Injection From Multirow Holes
,”
ASME J. Eng. Power
,
101
(
1
), pp.
101
108
.
9.
Afejuku
,
W. O.
,
Hay
,
N.
, and
Lampard
,
D.
,
1980
, “
The Film Cooling Effectiveness of Double Row of Holes
,”
ASME J. Eng. Power
,
102
(
3
), pp.
601
606
.
10.
Harrington
,
M. K.
,
McWaters
,
M. A.
,
Bogard
,
D. G.
,
Lemmon
,
C. A.
, and
Thole
,
K. A.
,
2001
, “
Full-Coverage Film Cooling With Short Normal Injection Holes
,”
ASME J. Turbomach.
,
123
(
4
), pp.
798
805
.
11.
Saumweber
,
C.
, and
Schulz
,
A.
,
2004
, “
Interaction of Film Cooling Rows: Effects of Hole Geometry and Row Spacing on the Cooling Performance Downstream of the Second Row of Holes
,”
ASME J. Turbomach.
,
126
(
2
), pp.
237
246
.
12.
Muska
,
J. F.
,
Fish
,
R. W.
, and
Suo
,
M.
,
1976
, “
The Additive Nature of Film Cooling From Rows of Holes
,”
ASME J. Eng. Power
,
98
(
4
), pp.
457
463
.
13.
Polanka
,
M. D.
,
Ethridge
,
M. I.
,
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
,
2000
, “
Effects of Showerhead Injection on Film Cooling Effectiveness for a Downstream Row of Holes
,”
ASME
Paper No. 2000-GT-240.
14.
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
,
2002
, “
Evaluation of Pressure Side Film Cooling With Flow and Thermal Field Measurements
,”
ASME J. Turbomach.
,
124
(
4
), pp.
670
685
.
15.
Schneider
,
M.
,
Parneix
,
S.
, and
von Wolfersdorf
,
J.
,
2003
, “
Effect of Showerhead Injection on Superposition of Multi-Row Pressure Side Film Cooling With Fan Shaped Holes
,”
ASME
Paper No. GT2003-38693.
16.
Mhetras
,
S.
, and
Han
,
J. C.
,
2006
, “
Effect of Superposition on Spanwise Film-Cooling Effectiveness Distribution on a Gas Turbine Blade
,”
ASME
Paper No. IMECE2006-15084.
17.
Kinell
,
M.
,
Utriainen
,
E.
,
Najafabadi
,
H. N.
,
Karlsson
,
M.
, and
Barabas
,
B.
,
2012
, “
Comparison of Gas Turbine Vane Pressure Side and Suction Side Film Cooling Performance and the Applicability of Superposition
,”
ASME
Paper No. GT2012-68994.
18.
Luckey
,
D. W.
, and
L'Ecuyer
,
M. R.
,
1981
, “
Stagnation Region Gas Film Cooling—Spanwise Angled Injection From Multiple Rows of Holes
,” NASA Contractor Report No. 165333.
19.
Takeishi
,
K.
,
Aoki
,
S.
,
Sato
,
T.
, and
Tsukagoshi
,
K.
,
1992
, “
Film Cooling on a Gas Turbine Rotor Blade
,”
ASME J. Turbomach.
,
114
(
4
), pp.
828
834
.
20.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Adv. Heat Transfer
,
7
, pp.
321
379
.
21.
Lad
,
B.
,
He
,
L.
, and
Romero
,
E.
,
2012
, “
Validation of the Immersed Mesh Block (IMB) Approach Against a Cooled Transonic Turbine Stage
,”
ASME
Paper No. GT2012-68779.
22.
Baldauf
,
S.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2002
, “
Correlation of Film-Cooling Effectiveness From Thermographic Measurements at Enginelike Conditions
,”
ASME J. Turbomach.
,
124
(
4
), pp.
686
698
.
You do not currently have access to this content.