Performance deterioration in gas turbine engines (GTEs) depends on various factors in the ambient and the operating conditions. For example, humidity condensation at the inlet duct of a GTE creates water mist, which affects the fouling phenomena in the compressor and varies the performance. In this paper, the effective factors on the short-term performance deterioration of a GTE are identified and studied. GTE performance level is quantified with two physics-based performance indicators, calculated from the recorded operating data from the control system of a GTE over a full time between overhaul (TBO) period. A regularized particle filtering (RPF) framework is developed for filtering the indicator signals, and an adaptive neuro-fuzzy inference system (ANFIS) is then trained with the filtered signals and the effective ambient and the operating conditions, i.e., the power, the air mass flow, and the humidity condensation rate. The trained ANFIS model is then run to simulate the GTE performance deterioration in different conditions for system identification. The extracted behavior of the system clearly shows the dependency of the trend of performance deterioration on the operating conditions, especially the humidity condensation rate. The developed technique and the results can be utilized for GTE performance prediction, as well as for suggesting the optimum humidity supply at the GTE intake to control the performance deterioration rate.

References

References
1.
Schneider
,
E.
,
Bussjaeger
,
S. D.
,
Franco
,
S.
, and
Therkorn
,
D.
,
2010
, “
Analysis of Compressor On-Line Washing to Optimize Gas Turbine Power Plant Performance
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
062001
.
2.
Kurz
,
R.
, and
Brun
,
K.
,
2001
, “
Degradation in Gas Turbine Systems
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
70
77
.
3.
Boyce
,
M. P.
, and
Gonzalez
,
F.
,
2007
, “
A Study of On-Line and Off-Line Turbine Washing to Optimize the Operation of a Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
114
122
.
4.
Meher-Homji
,
C. B.
, and
Bromley
,
A.
,
2004
, “
Gas Turbine Axial Compressor Fouling and Washing
,”
33rd Turbomachinery Symposium
, Houston, TX, Sept. 20–23, pp.
163
192
.
5.
Stalder
,
J.
,
2001
, “
Gas Turbine Compressor Washing State of the Art: Field Experiences
,”
ASME J. Eng. Gas Turbines Power
,
123
(
2
), pp.
363
370
.
6.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
2004
,
Gas Turbine Performance
,
Blackwell Science
,
Malden, MA
, Chap. 6.
7.
Li
,
Y.
,
Ghafir
,
M. A.
,
Wang
,
L.
,
Singh
,
R.
,
Huang
,
K.
, and
Feng
,
X.
,
2011
, “
Nonlinear Multiple Points Gas Turbine Off-Design Performance Adaptation Using a Genetic Algorithm
,”
ASME J. Eng. Gas Turbines Power
,
133
(
7
), p.
071701
.
8.
Hanachi
,
H.
,
Liu
,
J.
,
Banerjee
,
A.
,
Chen
,
Y.
, and
Koul
,
A.
,
2015
, “
A Physics-Based Modeling Approach for Performance Monitoring in Gas Turbine Engine
,”
IEEE Trans. Reliab.
,
64
(
1
), pp.
197
205
.
9.
Hanachi
,
H.
,
Liu
,
J.
,
Banerjee
,
A.
, and
Chen
,
Y.
,
2015
, “
Effects of the Intake Air Humidity on the Gas Turbine Performance Monitoring
,”
ASME
Paper No. GT2015-43026.
10.
Hanachi
,
H.
,
Liu
,
J.
,
Banerjee
,
A.
, and
Chen
,
Y.
,
2015
, “
A Framework With Nonlinear System Model and Nonparametric Noise for Gas Turbine Degradation State Estimation
,”
Meas. Sci. Technol.
,
26
(
6
), p.
065604
.
11.
Buck
,
A. L.
,
1981
, “
New Equations for Computing Vapor Pressure and Enhancement Factor
,”
J. Appl. Meteorol.
,
20
(
12
), pp.
1527
1532
.
12.
Cengel
,
Y. A.
,
Boles
,
M. A.
, and
Kanoğlu
,
M.
,
2011
,
Thermodynamics: An Engineering Approach
,
McGraw-Hill
,
New York
.
13.
Simon
,
D.
,
2006
,
Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches
,
Wiley, Hoboken
,
NJ
, Chap. 5.
14.
Arulampalam
,
M. S.
,
Maskell
,
S.
,
Gordon
,
N.
, and
Clapp
,
T.
,
2002
, “
A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking
,”
IEEE Trans. Signal Process.
,
50
(
2
), pp.
174
188
.
15.
Liu
,
J.
,
Wang
,
W.
, and
Ma
,
F.
,
2011
, “
A Regularized Auxiliary Particle Filtering Approach for System State Estimation and Battery Life Prediction
,”
Smart Mater. Struct.
,
20
(
7
), p.
075021
.
16.
Kacprzynski
,
G. J.
,
Gumina
,
M.
,
Roemer
,
M. J.
,
Caguiat
,
D. E.
, and
Galie
,
T. R.
,
2001
, “
A Prognostic Modeling Approach for Predicting Recurring Maintenance for Shipboard Propulsion Systems
,”
ASME
Paper No. 2001-GT-0218.
17.
Loboda
,
I.
, and
Feldshteyn
,
Y.
,
2010
, “
Polynomials and Neural Networks for Gas Turbine Monitoring: A Comparative Study
,”
ASME
Paper No. GT2010-23749.
18.
Salahshoor
,
K.
,
Kordestani
,
M.
, and
Khoshro
,
M. S.
,
2010
, “
Fault Detection and Diagnosis of an Industrial Steam Turbine Using Fusion of SVM (Support Vector Machine) and ANFIS (Adaptive Neuro-Fuzzy Inference System) Classifiers
,”
Energy
,
35
(
12
), pp.
5472
5482
.
19.
Salahshoor
,
K.
,
Khoshro
,
M. S.
, and
Kordestani
,
M.
,
2011
, “
Fault Detection and Diagnosis of an Industrial Steam Turbine Using a Distributed Configuration of Adaptive Neuro-Fuzzy Inference Systems
,”
Simul. Modell. Pract. Theory
,
19
(
5
), pp.
1280
1293
.
20.
Cavarzere
,
A.
, and
Venturini
,
M.
,
2012
, “
Application of Forecasting Methodologies to Predict Gas Turbine Behavior Over Time
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
012401
.
21.
Asgari
,
H.
,
Chen
,
X.
,
Menhaj
,
M. B.
, and
Sainudiin
,
R.
,
2013
, “
Artificial Neural Network-Based System Identification for a Single-Shaft Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
092601
.
22.
Cohen
,
M. E.
, and
Hudson
,
D. L.
,
1995
,
Comparative Approaches to Medical Reasoning
,
World Scientific
,
Singapore
, Chap. 2.
23.
Jang
,
J.
,
1993
, “
ANFIS: Adaptive-Network-Based Fuzzy Inference System
,”
IEEE Trans. Syst., Man, Cybern.
,
23
(
3
), pp.
665
685
.
24.
Takagi
,
T.
, and
Sugeno
,
M.
,
1985
, “
Fuzzy Identification of Systems and Its Applications to Modeling and Control
,”
IEEE Trans. Syst., Man, Cybern.
,
SMC-15
(
1
), pp.
116
132
.
You do not currently have access to this content.