Computational fluid dynamics (CFD) analysis, which solves the full three-dimensional (3D) Navier–Stokes equations, has been recognized as having promise in providing a more detailed and accurate analysis for oil-film journal bearings than the traditional Reynolds analysis, although there are still challenging issues requiring further investigation, such as the modeling of cavitation and the modeling of conjugate heat transfer effects in the CFD analysis of bearings. In this paper, a 3D CFD method for the analysis of journal bearings considering the above two effects has been developed; it employs three different cavitation models, including the Half-Sommerfeld model, a vaporous cavitation model, and a gaseous cavitation model. The method has been used to analyze a two-groove journal bearing and the results are validated with experimental measurements and the traditional Reynolds solutions. It is found that the CFD method which considers the conjugate heat transfer and employs the gaseous cavitation model gives better predictions of both bearing load and temperature than either the traditional Reynolds solution or CFD with other cavitation models. The CFD results also show strong recirculation of the fresh oil in the grooves, which has been neglected in the traditional Reynolds solution. The above results show conclusively that the present 3D CFD method considering the conjugate heat transfer and employing the gaseous cavitation model provides an efficient tool for more detailed and accurate analysis for bearing performance.

References

References
1.
Uhkoetter
,
S.
,
Wiesche
,
S. A. D.
,
Kursch
,
M.
, and
Beck
,
C.
,
2012
, “
Development and Validation of a Three-Dimensional Multiphase Flow Computational Fluid Dynamics Analysis for Journal Bearings in Steam and Heavy Duty Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
102504
.
2.
Brajdic-Mitidieri
,
P.
,
Gosman
,
A. D.
,
Ioannides
,
E.
, and
Spikes
,
H. A.
,
2005
, “
CFD Analysis of a Low Friction Pocketed Pad Bearing
,”
ASME J. Tribol.
,
127
(
4
), pp.
803
812
.
3.
Medwell
,
J. O.
,
Gethin
,
D. T.
, and
Taylor
,
C.
,
1987
, “
A Finite Element Analysis of the Navier–Stokes Equations Applied to High Speed Thin Film Lubrication
,”
ASME J. Tribol.
,
109
(
1
), pp.
71
76
.
4.
Tucker
,
P.
, and
Keogh
,
P.
,
1995
, “
A Generalized Computational Fluid Dynamics Approach for Journal Bearing Performance Prediction
,”
Proc. Inst. Mech. Eng., Part J
,
209
(
2
), pp.
99
108
.
5.
Tucker
,
P. G.
, and
Keogh
,
P. S.
,
1996
, “
On the Dynamic Thermal State in a Hydrodynamic Bearing With a Whirling Journal Using CFD Techniques
,”
ASME J. Tribol.
,
118
(
2
), pp.
356
363
.
6.
Keogh
,
P. S.
,
Gomiciaga
,
R.
, and
Khonsari
,
M. M.
,
1997
, “
CFD Based Design Techniques for Thermal Prediction in a Generic Two-Axial Groove Hydrodynamic Journal Bearing
,”
ASME J. Tribol.
,
119
(
3
), pp.
428
435
.
7.
Nassab
,
S. G.
, and
Moayeri
,
M.
,
2002
, “
Three-Dimensional Thermohydrodynamic Analysis of Axially Grooved Journal Bearings
,”
Proc. Inst. Mech. Eng., Part J
,
216
(
1
), pp.
35
47
.
8.
Solghar
,
A. A.
, and
Gandjalikhan Nassab
,
S. A.
,
2013
, “
The Investigation of Thermohydrodynamic Characteristic of Single Axial Groove Journal Bearings With Finite Length by Using CFD Techniques
,”
Int. J. Comput. Methods
,
10
(
5
), p.
1350031
.
9.
Guo
,
Z.
,
Hirano
,
T.
, and
Kirk
,
R. G.
,
2005
, “
Application of CFD Analysis for Rotating Machinery—Part I: Hydrodynamic, Hydrostatic Bearings and Squeeze Film Damper
,”
ASME J. Eng. Gas Turbines Power
,
127
(
2
), pp.
445
451
.
10.
Gertzos
,
K. P.
,
Nikolakopoulos
,
P. G.
, and
Papadopoulos
,
C. A.
,
2008
, “
CFD Analysis of Journal Bearing Hydrodynamic Lubrication by Bingham Lubricant
,”
Tribol. Int.
,
41
(
12
), pp.
1190
1204
.
11.
Liu
,
H.
,
Xu
,
H.
,
Zhang
,
Y.
,
Ji
,
H.
,
Ge
,
Y.
,
Ellison
,
P.
, and
Jin
,
Z.
,
2009
, “
The Influence of Sea Water in Oil Emulsion on Bearing Performance
,”
Proc. Inst. Mech. Eng., Part J
,
223
(J
3
), pp.
457
468
.
12.
Liu
,
H.
,
Xu
,
H.
,
Ellison
,
P. J.
, and
Jin
,
Z. M.
,
2010
, “
Application of Computational Fluid Dynamics and Fluid–Structure Interaction Method to the Lubrication Study of a Rotor-Bearing System
,”
Tribol. Lett.
,
38
(
3
), pp.
325
336
.
13.
Li
,
Q.
,
Yu
,
G. C.
,
Liu
,
S. L.
, and
Zheng
,
S. Y.
,
2012
, “
Application of Computational Fluid Dynamics and Fluid Structure Interaction Techniques for Calculating the 3D Transient Flow of Journal Bearings Coupled With Rotor Systems
,”
Chin. J. Mech. Eng.
,
25
(
5
), pp.
926
932
.
14.
Schmidt
,
M.
,
Stücke
,
P.
, and
Nobis
,
M.
,
2011
, “
Numerical Meshing Issues for Three-Dimensional Flow Simulation in Journal Bearings
,”
3rd Micro and Nano Flows Conference
, Thessaloniki, Greece, pp. Aug. 22–24.
15.
Braun
,
M.
, and
Hannon
,
W.
,
2010
, “
Cavitation Formation and Modelling for Fluid Film Bearings: A Review
,”
Proc. Inst. Mech. Eng.
, Part J,
224
(
9
), pp.
839
863
.
16.
ESI Group
,
2006
,
CFD-ACE+ V2006 Modules Manual
, ESI-US, R. D., Huntsville, AL.
17.
Swales
,
P.
,
1974
, “
A Review of Cavitation Phenomena in Engineering Situations
,”
1st Leeds–Lyon Symposium on Tribology
, Leeds, UK, Sept.,
D.
Dowson
,
M.
Priest
,
G.
Dalmaz
, and
A.
Lubrecht
, eds., pp.
3
9
.
18.
Dowson
,
D.
, and
Taylor
,
C.
,
1974
, “
Fundamental Aspects of Cavitation in Bearings
,”
1st Leeds–Lyon Symposium on Tribology
, Leeds, UK, Sept.,
D.
Dowson
,
M.
Priest
,
G.
Dalmaz
, and
A.
Lubrecht
, eds., pp.
15
28
.
19.
Song
,
Y.
,
Li
,
X. S.
, and
Gu
,
C. W.
,
2010
, “
Cavitation Model for Oil Film Bearings
,”
J. Tsinghua Univ. (Sci. Technol.)
,
50
(
7
), pp.
1047
1052
.
20.
Li
,
X. S.
,
Song
,
Y.
,
Hao
,
Z. R.
, and
Gu
,
C. W.
,
2012
, “
Cavitation Mechanism of Oil-Film Bearing and Development of a New Gaseous Cavitation Model Based on Air Solubility
,”
ASME J. Tribol.
,
134
(
3
), p.
031701
.
21.
Lund
,
J.
, and
Tonnesen
,
J.
,
1984
, “
An Approximate Analysis of the Temperature Conditions in a Journal Bearing. Part II: Application
,”
ASME J. Tribol.
,
106
(
2
), pp.
237
244
.
22.
Plesset
,
M. S.
,
1949
, “
The Dynamics of Cavitation Bubbles
,”
ASME J. Appl. Mech.
,
16
, pp.
277
282
.
23.
Bakir
,
F.
,
Rey
,
R.
,
Gerber
,
A.
,
Belamri
,
T.
, and
Hutchinson
,
B.
,
2004
, “
Numerical and Experimental Investigations of the Cavitating Behavior of an Inducer
,”
Int. J. Rotating Mach.
,
10
(
1
), pp.
15
25
.
24.
Gehannin
,
J.
,
Arghir
,
M.
, and
Bonneau
,
O.
,
2009
, “
Evaluation of Rayleigh–Plesset Equation Based Cavitation Models for Squeeze Film Dampers
,”
ASME J. Tribol.
,
131
(
2
), p.
024501
.
25.
Guo
,
G.
,
Fan
,
Y.
, and
Jia
,
F.
,
2008
, “
Solubility of Air in Dimethyl Silicone and Hydraulic Oils
,”
Acta Phys. Chim. Sin.
,
24
(
7
), pp.
1225
1232
.
26.
ANSYS, Inc.
,
2009
,
ANSYS 12.1 Documentation
, ANSYS Inc., Canonsburg, PA.
27.
Knight
,
J. D.
, and
Niewiarowski
,
A. J.
,
1990
, “
Effects of Two Film Rupture Models on the Thermal Analysis of a Journal Bearing
,”
ASME J. Tribol.
,
112
(2), pp.
183
188
.
28.
Stefani
,
F.
, and
Rebora
,
A.
,
2009
, “
Steadily Loaded Journal Bearings: Quasi-3D Mass–Energy-Conserving Analysis
,”
Tribol. Int.
,
42
(
3
), pp.
448
460
.
29.
Diaz
,
S.
,
1999
, “
The Effect of Air Entrapment on the Performance of Squeeze Film Dampers: Experiments and Analysis
,” Ph.D. thesis, Texas A&M University, College Station, TX.
30.
Bayada
,
G.
, and
Chupin
,
L.
,
2013
, “
Compressible Fluid Model for Hydrodynamic Lubrication Cavitation
,”
ASME J. Tribol.
,
135
(
4
), p.
041702
.
31.
Lund
,
J. W.
, and
Hansen
,
P. K.
,
1984
, “
An Approximate Analysis of the Temperature Conditions in a Journal Bearing. Part I: Theory
,”
ASME J. Tribol.
,
106
(
2
), pp.
228
236
.
32.
Heshmat
,
H.
, and
Pinkus
,
O.
,
1986
, “
Mixing Inlet Temperatures in Hydrodynamic Bearings
,”
ASME J. Tribol.
,
108
(
2
), pp.
231
244
.
33.
Gethin
,
D.
,
1988
, “
A Finite Element Approach to Analysing Thermohydrodynamic Lubrication in Journal Bearings
,”
Tribol. Int.
,
21
(
2
), pp.
67
75
.
34.
Gethin
,
D.
,
1996
, “
Modelling the Thermohydrodynamic Behaviour of High Speed Journal Bearings
,”
Tribol. Int.
,
29
(
7
), pp.
579
596
.
35.
Dzodzo
,
M.
,
Braun
,
M.
, and
Hendricks
,
R.
,
1996
, “
Pressure and Flow Characteristics in a Shallow Hydrostatic Pocket With Rounded Pocket/Land Joints
,”
Tribol. Int.
,
29
(
1
), pp.
69
76
.
You do not currently have access to this content.